Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A decade of discovery: CRISPR functions and applications

Abstract

This year marks the tenth anniversary of the identification of the biological function of CRISPR–Cas as adaptive immune systems in bacteria. In just a decade, the characterization of CRISPR–Cas systems has established a novel means of adaptive immunity in bacteria and archaea and deepened our understanding of the interplay between prokaryotes and their environment, and CRISPR-based molecular machines have been repurposed to enable a genome editing revolution. Here, we look back on the historical milestones that have paved the way for the discovery of CRISPR and its function, and discuss the related technological applications that have emerged, with a focus on microbiology. Lastly, we provide a perspective on the impacts the field has had on science and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRISPR milestones and seminal discoveries.
Figure 2: CRISPR-based applications.

References

  1. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Jansen, R., van Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of a novel family of sequence repeats among prokaryotes. OMICS 6, 23–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553–3556 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groenen, P. M., Bunschoten, A. E., van Soolingen, D. & van Embden, J. D. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10, 1057–1065 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Hoe, N. et al. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg. Infect. Dis. 5, 254–263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Masepohl, B., Gorlitz, K. & Bohme, H. Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1307, 26–30 (1996).

    Article  PubMed  Google Scholar 

  11. Mojica, F. J., Diez-Villasenor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30, 482–496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klaenhammer, T. et al. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82, 29–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Altermann, E. et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl Acad. Sci. USA 102, 3906–3912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarova, K. et al. Comparative genomics of the lactic acid bacteria. Proc. Natl Acad. Sci. USA 103, 15611–15616 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Carte, J. et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 93, 98–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 10, 841–851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haurwitz, R. E., Sternberg, S. H. & Doudna, J. A. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO J. 31, 2824–2832 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl Acad. Sci USA 108, 10098–10103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl Acad. Sci. USA 108, 10092–10097 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275–9282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, W., Samai, P. & Marraffini, L. A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164, 710–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makarova, K. S. & Koonin, E. V. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311, 47–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pennisi, E. The CRISPR craze. Science 341, 833–836 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Barrangou, R. & May, A. P. Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin. Biol. Ther. 15, 311–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ledford, H. CRISPR, the disruptor. Nature 522, 20–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Gilbert, L. A. et al. Genome-Scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heler, R., Marraffini, L. A. & Bikard, D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol. 93, 1–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heler, R. et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199–202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nunez, J. K., Harrington, L. B., Kranzusch, P. J., Engelman, A. N. & Doudna, J. A. Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szczelkun, M. D. et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl Acad. Sci. USA 111, 9798–9803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun, C. L., Thomas, B. C., Barrangou, R. & Banfield, J. F. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 10, 858–870 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pawluk, A. et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1, 16085 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Barrangou, R. et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41, 1383–1391 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Paez-Espino, D. et al. Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat. Commun. 4, 1430 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Shariat, N. et al. Subtyping of Salmonella enterica Serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. J. Clin. Microbiol. 51, 2328–2336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barrangou, R. & Dudley, E. G. CRISPR-based typing and next-generation tracking technologies. Annu. Rev. Food Sci. Technol. 7, 395–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Sciencehttp://dx.doi.org/10.1126/science.aaf1175 (2016).

  75. Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).

    CAS  PubMed  Google Scholar 

  76. Pride, D. T. et al. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 21, 126–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weinberger, A. D. et al. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput. Biol. 8, e1002475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Briner, A. E. & Barrangou, R. Deciphering and shaping bacterial diversity through CRISPR. Curr. Opin. Microbiol. 31, 101–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Heidelberg, J. F., Nelson, W. C., Schoenfeld, T. & Bhaya, D. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4, e4169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Barrangou, R. & Horvath, P. CRISPR: new horizons in phage resistance and strain identification. Annu. Rev. Food Sci. Technol. 3, 143–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461–11466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Sun, C. L. et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15, 463–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6, e00262-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Box, A. M., McGuffie, M. J., O’Hara, B. J. & Seed, K. D. Functional analysis of bacteriophage immunity through a type I-E CRISPR-Cas System in Vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 198, 578–590 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Martel, B. & Moineau, S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 42, 9504–9513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291–6294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gomaa, A. A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5, e00928-13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gong, B. et al. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc. Natl Acad. Sci. USA 111, 16359–16364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hochstrasser, M. L. et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Natl Acad. Sci. USA 111, 6618–6623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huo, Y. et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21, 771–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sinkunas, T. et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 30, 1335–1342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sinkunas, T. et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32, 385–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luo, M. L., Mullis, A. S., Leenay, R. T. & Beisel, C. L. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Barrangou, R. et al. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 43, 3407–3419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makarova, K. S., Zhang, F. & Koonin, E. V. Snapshot: class 1 CRISPR-Cas systems. Cell 168, 946–946.e1 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Makarova, K. S., Zhang, F. & Koonin, E. V. Snapshot: class 2 CRISPR-Cas systems. Cell 168, 328–328.e1 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Barrangou, R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 16, 247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamano, T. et al. Crystal Structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anders, C., Bargsten, K. & Jinek, M. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61, 895–902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, L. et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 65, 310–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Lewis, K. M. & Ke, A. Building the class 2 CRISPR-Cas arsenal. Mol. Cell 65, 377–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Briner, A. E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42, 2577–2590 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Selle, K., Klaenhammer, T. R. & Barrangou, R. CRISPR-based screening of genomic island excision events in bacteria. Proc. Natl Acad. Sci. USA 112, 8076–8081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oh, J. H. & van Pijkeren, J. P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42, e131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Selle, K. & Barrangou, R. CRISPR-based technologies and the future of food science. J. Food Sci. 80, R2367–R2372 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Mougiakos, I., Bosma, E. F., de Vos, W. M., van Kranenburg, R. & van der Oost, J. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34, 575–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Sontheimer, E. J. & Barrangou, R. The bacterial origins of the CRISPR genome-editing revolution. Hum. Gene Ther. 26, 413–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Lander, E. S. The heroes of CRISPR. Cell 164, 18–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Baltimore, D. et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348, 36–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zetsche, B. et al. Cpf1 is a Single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62, 137–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sampson, T. R. et al. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc. Natl Acad. Sci. USA 111, 11163–11168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. L. & Weiss, D. S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Louwen, R. et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 32, 207–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Louwen, R., Staals, R. H., Endtz, H. P., van Baarlen, P. & van der Oost, J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78, 74–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 12, 36 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krupovic, M., Shmakov, S., Makarova, K. S., Forterre, P. & Koonin, E. V. Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity. Genome Biol. Evol. 8, 375–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. The basic building blocks and evolution of CRISPR-CAS systems. Biochem. Soc. Trans. 41, 1392–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kapitonov, V. V., Makarova, K. S. & Koonin, E. V. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J. Bacteriol. 198, 797–807 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.B. is supported by funds from North Carolina State University and the North Carolina Ag. Foundation. The authors would like to thank their colleagues and collaborators for their contributions and insights, and for having the privilege to share the CRISPR journey.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and P.H. wrote the manuscript.

Corresponding author

Correspondence to Rodolphe Barrangou.

Ethics declarations

Competing interests

R.B. and P.H. are co-inventors on several patents related to CRISPR–Cas systems and their various uses. R.B. is a co-founder and SAB member of Intellia Therapeutics and Locus Biosciences, and a shareholder of Caribou Biosciences and DuPont. P.H. is an employee of DuPont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrangou, R., Horvath, P. A decade of discovery: CRISPR functions and applications. Nat Microbiol 2, 17092 (2017). https://doi.org/10.1038/nmicrobiol.2017.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing