Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A capsidless ssRNA virus hosted by an unrelated dsRNA virus

Abstract

Viruses typically encode the capsid that encases their genome, while satellite viruses do not encode a replicase and depend on a helper virus for their replication1. Here, we report interplay between two RNA viruses, yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1), in a phytopathogenic fungus, Rosellinia necatrix2. YkV1 has a close phylogenetic affinity to positive-sense, single-stranded (+)ssRNA viruses such as animal caliciviruses3, while YnV1 has an undivided double-stranded (ds) RNA genome with a resemblance to fungal totiviruses4. Virion transfection and infectious full-length cDNA transformation has shown that YkV1 depends on YnV1 for viability, although it probably encodes functional RNA-dependent RNA polymerase (RdRp). Immunological and molecular analyses have revealed trans-encapsidation of not only YkV1 RNA but also RdRp by the capsid protein of the other virus (YnV1), and enhancement of YnV1 accumulation by YkV1. This study demonstrates interplay in which the capsidless (+)ssRNA virus (YkV1), hijacks the capsid protein of the dsRNA virus (YnV1), and replicates as if it were a dsRNA virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1) infecting R. necatrix strain W1032 and composition of virus particles isolated from it.
Figure 2: Interaction between YnV1 and YkV1.
Figure 3: Proposed model for interactions between YnV1 and YkV1.

Similar content being viewed by others

References

  1. Simon, A. E., Roossinck, M. J. & Havelda, Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu. Rev. Phytopathol. 42, 415–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kondo, H., Kanematsu, S. & Suzuki, N. Viruses of the white root rot fungus, Rosellinia necatrix. Adv. Virus Res. 86, 177–214 (2013).

    Article  PubMed  Google Scholar 

  3. Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wickner, R. B., Ghabrial, S. A., Nibert, M. L., Patterson, J. L. & Wang, C. C. in Virus Taxonomy: Ninth Report of the International Committee for the Taxonomy of Viruses (eds King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowits, E. J. ) 639–650 (Elsevier, 2011).

    Google Scholar 

  5. Ghabrial, S. & Suzuki, N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 47, 353–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Suttle, C. A. Marine viruses—major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  7. Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

    Article  PubMed  Google Scholar 

  8. Dunigan, D. D., Fitzgerald, L. A. & Van Etten, J. L. Phycodnaviruses: a peek at genetic diversity. Virus Res. 117, 119–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Colson, P. et al. ‘Megavirales’, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hillman, B. I. & Suzuki, N. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63, 423–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Taliansky, M. E. & Robinson, D. J. Molecular biology of umbraviruses: phantom warriors. J. Gen. Virol. 84, 1951–1960 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R. & Tzanetakis, I. E. Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Res. 140, 130–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hillman, B. I. & Cai, G. The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).

    Article  PubMed  Google Scholar 

  15. Chiba, S., Lin, Y. H., Kondo, H., Kanematsu, S. & Suzuki, N. A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix is infectious as particles and targeted by RNA silencing. J. Virol. 87, 6727–6738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaegashi, H., Yoshikawa, N., Ito, T. & Kanematsu, S. A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix. Virology 444, 409–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Yaegashi, H. et al. Appearance of mycovirus-like double-stranded RNAs in the white root rot fungus, Rosellinia necatrix, in an apple orchard. FEMS Microbiol. Ecol. 83, 49–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, Y. H. et al. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology 426, 42–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Dinman, J. D., Icho, T. & Wickner, R. B. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag–pol fusion protein. Proc. Natl Acad. Sci. USA 88, 174–178 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salaipeth, L., Chiba, S., Eusebio-Cope, A., Kanematsu, S. & Suzuki, N. Biological properties and expression strategy of Rosellinia necatrix megabirnavirus 1 analyzed in an experimental host, Cryphonectria parasitica. J. Gen. Virol. 95, 740–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, H. et al. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol. Biol. 12, 91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ikeda, Y., Shimura, H., Kitahara, R., Masuta, C. & Ezawa, T. A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis. Mol. Plant Microbe Interact. 25, 1005–1012 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, D. & Ghabrial, S. A. Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J. Gen. Virol. 85, 2111–2121 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kozlakidis, Z., Herrero, N., Ozkan, S., Bhatti, M. F. & Coutts, R. H. A novel dsRNA element isolated from the Aspergillus foetidus mycovirus complex. Arch. Virol. 158, 2625–2628 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ahlquist, P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Rev. Microbiol. 4, 371–382 (2006).

    Article  CAS  Google Scholar 

  26. Barajas, D., Martin, I. F., Pogany, J., Risco, C. & Nagy, P. D. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of tomato bushy stunt virus replicase. PLoS Pathogens 10, e1004087 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fahima, T., Kazmierczak, P., Hansen, D. R., Pfeiffer, P. & Van Alfen, N. K. Membrane-associated replication of an unencapsidated double-strand RNA of the fungus, Cryphonectria parasitica. Virology 195, 81–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Wickner, R. B., Fujimura, T. & Esteban, R. Viruses and prions of Saccharomyces cerevisiae. Adv. Virus Res. 86, 1–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vainio, E. J. et al. Population structure of a novel putative mycovirus infecting the conifer root-rot fungus Heterobasidion annosum sensu lato. Virology 422, 366–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Rastgou, M. et al. Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J. Gen. Virol. 90, 2525–2535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koonin, E. V., Wolf, Y. I., Nagasaki, K. & Dolja, V. V. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Rev. Microbiol. 6, 925–939 (2008).

    Article  CAS  Google Scholar 

  33. Kanematsu, S. et al. A Reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94, 561–568 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Chiba, S. et al. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83, 12801–12812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hillman, B. I., Supyani, S., Kondo, H. & Suzuki, N. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J. Virol. 78, 892–898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki, A., Kanematsu, S., Onoue, M., Oyama, Y. & Yoshida, K. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Arch. Virol. 151, 697–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Eusebio-Cope, A. & Suzuki, N. Mycoreovirus genome rearrangements associated with RNA silencing deficiency. Nucleic Acids Res. 43, 3802–3813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, Y. H., Hisano, S., Yaegashi, H., Kanematsu, S. & Suzuki, N. A second quadrivirus strain from the phytopathogenic filamentous fungus Rosellinia necatrix. Arch. Virol. 158, 1093–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Segers, G. C., Regier, J. C. & Nuss, D. L. Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in G alpha subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 3, 1454–1463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Charoenpanich, J., Tani, A., Moriwaki, N., Kimbara, K. & Kawai, F. Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology 152, 3025–3034 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki, N., Sugawara, M., Nuss, D. L. & Matsuura, Y. Polycistronic (tri- or bicistronic) phytoreoviral segments translatable in both plant and insect cells. J. Virol. 70, 8155–8159 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kondo, H., Chiba, S., Toyoda, K. & Suzuki, N. Evidence for negative-strand RNA virus infection in fungi. Virology 435, 201–209 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Yomogi Inc. (N.S.) and the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and food Industry (25032AB) (S.K. and N.S.) for financial support during this study. The authors thank R. Dietzgen, K. Hyodo and I.B. Andika for discussions and critical reading of the manuscript. The authors are also grateful to T. Shiokawa and H. Tada at the Division of Instrumental Analysis, Okayama University, for the amino-acid sequence analyses.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and N.S. designed the research. R.Z., S.H., A.T. and H.K. performed the experiments. S.K. contributed fungal materials. H.K., A.T. and N.S. analysed the data. N.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nobuhiro Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Tables 1–4. (PDF 4752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Hisano, S., Tani, A. et al. A capsidless ssRNA virus hosted by an unrelated dsRNA virus. Nat Microbiol 1, 15001 (2016). https://doi.org/10.1038/nmicrobiol.2015.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing