Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Carbon nanotubes

Bandgap engineering with strain

Much of the interest in carbon nanotubes arises from the interesting interplay between their helical structure and electronic properties. With greater understanding of the way in which mechanical strain changes their conductance, it may soon be possible to continuously tune the electromechanical response of nanotubes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon nanotube (CNT) basics.
Figure 2: Metal-semiconductor transition in carbon nanotubes (CNTs).

Adapted from ref. 8, © 2003 American Physical Society.

References

  1. Iijima, S. Nature 354, 56–58 ( 1991).

    Article  CAS  Google Scholar 

  2. Mintmire, J.W., Dunlap, B.I. & White, C.T. Phys. Rev. Lett. 68, 631–634 ( 1992).

    Article  CAS  Google Scholar 

  3. Rochefort, A., Avouris, P., Lasage, F. & Salahub, D.R. Phys. Rev. B 60, 13824–13830 ( 1999).

    Article  CAS  Google Scholar 

  4. Nardelli, M. & Bernholc, J. Phys. Rev. B 60, R16338–R16341 ( 1999).

    Article  CAS  Google Scholar 

  5. Heyd, R., Charlier, A. & McRae, E. Phys. Rev. B 55, 6820–6824 ( 1997).

    Article  CAS  Google Scholar 

  6. Yang, L., Anantram, M.P., Han, J. & Lu, J.P. Phys. Rev. B 60, 13874–13878 ( 1999).

    Article  CAS  Google Scholar 

  7. Yang, L. & Han, J. Phys. Rev. Lett. 85, 154–157 ( 2000).

    Article  CAS  Google Scholar 

  8. Minot, E.D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M. & McEuen, P.L. Phys. Rev. Lett. 90, 156401 ( 2003).

    Article  CAS  Google Scholar 

  9. Cao, J., Wang, Q. & Dai, H. Phys. Rev. Lett. 90, 157601 ( 2003).

    Article  Google Scholar 

  10. Tombler, T.W. et al. Nature 405, 769–772 ( 2000).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Phys. Rev. Lett. 84, 4950–4953 ( 2000).

    Article  CAS  Google Scholar 

  12. Maiti, A., Svizhenko, A. & Anantram, M.P. Phys. Rev. Lett. 88, 126805 ( 2002).

    Article  Google Scholar 

  13. Kociak, M. et al. Phys. Rev. Lett. 89, 155501 ( 2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, A. Bandgap engineering with strain. Nature Mater 2, 440–442 (2003). https://doi.org/10.1038/nmat928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing