Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

The use of environmental scanning electron microscopy for imaging wet and insulating materials

Abstract

The environmental scanning electron microscope (ESEM) is a direct descendant of the conventional SEM, but also permits wet and insulating samples to be imaged without prior specimen preparation. A low pressure (up to around 10 torr) of a gas can be accommodated around the sample. When this gas is water, hydrated samples can be maintained in their native state. Whether the gas is water or some other gas, ions formed on collisions between electrons emitted from the sample and the gaseous molecules drift back towards the sample surface helping to reduce charge build up. This eliminates the need for insulators to be subjected to a conductive surface coating. These two key advantages of ESEM open up a wide range of materials to the power of scanning electron microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of ESEM.
Figure 2: Saturated vapour pressure of water as a function of temperature.
Figure 3: ESEM images of colloidal dispersions under different conditions.
Figure 4: ESEM image of a partially dehydrated latex.
Figure 5: ESEM image of a water droplet condensed onto a cellulosic fibre of cylindrical cross-section.
Figure 6: ESEM image of a block copolymer of polystyrene–polyisoprene, with a volume fraction of 50% polystyrene.

Micrograph courtesy of A. J. Ryan and C. Salou, University of Sheffield, UK.

Similar content being viewed by others

References

  1. Danilatos, G.D. Foundations of environmental scanning electron microscopy. Adv. Electron. El. Phys. 71, 109–250 (1988).

    Article  CAS  Google Scholar 

  2. Meredith, P., Donald, A.M. & Thiel, B. Electron-gas interactions in the environmental SEM's gaseous detector. Scanning 18, 467–473 (1996).

    Article  CAS  Google Scholar 

  3. Uwins, P.J.R. Environmental scanning electron microscopy. Mater. Forum 18, 51–75 (1994).

    CAS  Google Scholar 

  4. Schalek, R.L. & Drzal, L.T. Characterisation of advanced materials using an environmental SEM. J. Adv. Mater. 32, 32–38 (2000).

    CAS  Google Scholar 

  5. Maroni, V.A., Teplitsky, M. & Rupich, M.W. An ESEM study of the Ag/Bi-2223 composite conductor from 25–840 C. Physica C 1999, 169–174 (1999).

    Article  Google Scholar 

  6. Kjellsen, K.O. & Jennings, H.M. Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy. Adv. Cem. Based Mater. 3, 14–19 (1996).

    Article  CAS  Google Scholar 

  7. Huggett, J.M. & Uwins, P.J.R. Observations of water-clay reactions in water-sensitive sandstone and mudrocks using an ESEM. J. Petrol Sci. Eng. 10, 211–222 (1994).

    Article  CAS  Google Scholar 

  8. Schmid, B., Aas, N. & Odegard, G. High-temperature oxidation of nickel and chromium studies with an in-situ environmental scanning electron microscope. Scanning 23, 255–266 (2001).

    Article  CAS  Google Scholar 

  9. Cameron, R.E. & Donald, A.M. Minimising sample evaporation in the ESEM. J. Microsc. 173, 227–237 (1994).

    Article  Google Scholar 

  10. Royall, C.P. The Behaviour of Silica in Matt Water-based Lacquers. Thesis, Cambridge Univ. (2000).

    Google Scholar 

  11. Lange, D.A., Sujata, K. & Jennings, H.M. Observations of wet cement using electron microscopy. Ultramicroscopy 37, 234–238 (1991).

    Article  CAS  Google Scholar 

  12. Neubauer, C.M. & Jennings, H.M. The role of the ESEM in the investigation of cement-based materials. Scanning 18, 515–521 (1996).

    Article  CAS  Google Scholar 

  13. Meredith, P., Donald, A.M. & Luke, K. Pre-induction and induction hydration of tricalcium silicate: an environmental scanning electron microscopy study. J. Mater. Sci. 39, 1921–1930 (1995).

    Article  Google Scholar 

  14. Stark, J., Mosser, B. & Eckart, A. New approaches to cement hydration, part 2. ZKG Int. 54, 114–119 (2001).

    CAS  Google Scholar 

  15. Rodriguez-Navarro, C., Doehne, E. & Sebastian, E. How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement Concrete Res. 30, 1527–1534 (2000).

    Article  CAS  Google Scholar 

  16. Keddie, J.L., Meredith, P., Jones, R.A.L. & Donald, A.M. Kinetics of film formation in acrylic latices studied with multiple-angle-of-incidence ellipsometry and environmental SEM. Macromolecules 28, 2673–2682 (1995).

    Article  CAS  Google Scholar 

  17. Keddie, J.L., Meredith, P., Jones, R.A.L. & Donald, A.M. Film formation of acrylic latices with varying concentrations of non-film forming particles. Langmuir 12, 3793–3801 (1996).

    Article  CAS  Google Scholar 

  18. Donald, A.M. et al. Application of ESEM to colloidal aggregation and film formation. Colloids Surf. A 174, 37–53 (2000).

    Article  CAS  Google Scholar 

  19. Miller, A.F. & Cooper, S.J. In situ imaging of Langmuir films of nylon 6–6 polymer using ESEM. Langmuir 18, 1310–1317 (2002).

    Article  CAS  Google Scholar 

  20. Jenkins, L.M. & Donald, A.M. Condensation of water droplets onto individual fibres for contact angle measurement in the ESEM. Langmuir 15, 7829–7835 (1999).

    Article  CAS  Google Scholar 

  21. Nitz, H., Semke, H. & Mulhaupt, R. Influence of lignin type on the mechanical properties of lignin based compounds. Macromol. Mater. Eng. 286, 737–743 (2001).

    Article  CAS  Google Scholar 

  22. Gu, H., Zink-Sharp, A. & Sell, J. Hypothesis on the role of cell wall structure in differential transverse shrinkage of wood. Holz Roh Werkst. 59, 436–442 (2001).

    Article  Google Scholar 

  23. George, J., Klompen, E.T.J., & Peijs, T. Thermal degradation of green and upgraded flax fibres. Adv. Comp. Lett. 10, 81–88 (2001).

    Google Scholar 

  24. Jenkins, L. & Donald, A.M. Use of the ESEM for the observation of the swelling behaviour of cellulosic fibres. Scanning 19, 92–97 (1997).

    Article  CAS  Google Scholar 

  25. Cameron, R.E., Durrani, C.M. & Donald, A.M. Gelation of amylopectin without long range order. Stärke 46, 285–297 (1994).

    Article  CAS  Google Scholar 

  26. Darkin, M., Gilpin, C., Williams, J. & Sangha, C. Direct wet surface imaging of an anaerobic biofilm by environmental scanning electron microscopy: Application to landfill clay liner barriers. Scanning 23, 346–350 (2001).

    Article  CAS  Google Scholar 

  27. Douglas, S. & Douglas, D. Structural and geomicrobiological characteristics of a microbial commumity from a cold sulfide spring. Geomicrobiol. J. 18, 401–422 (2001).

    Article  Google Scholar 

  28. Tai, S.S.W. & Tang, X.M. Manipulating biological samples for environmental scanning electron microscopy. Scanning 23, 267–272 (2001).

    Article  CAS  Google Scholar 

  29. Uwins, P.J.R., Murray, M. & Gould, R.J. Effects of four different processing techniques on the microstructure of potatoes: comparison with fresh samples in the ESEM. Microsc. Res. Techniq. 25, 412–418 (1993).

    Article  CAS  Google Scholar 

  30. Rizzi, S.C. et al. Biodegratdable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J. Biomed. Mater. Res. 55, 475–486 (2001).

    Article  CAS  Google Scholar 

  31. Little, B., Wagner, P., Ray, R., Pope, R. & Scheetz, R. Biofilms - an ESEM evaluation of artifacts introduced during SEM preparation. J. Ind. Microbiol. 8, 213–222 (1991).

    Article  CAS  Google Scholar 

  32. Bache, I.C. & Donald, A.M. The structure of the gluten network in dough: A study using ESEM. Cer. Sci. 28, 127–133 (1998).

    Article  CAS  Google Scholar 

  33. Callow, J.A., Osborne, M.P., Callow, M.E., Baker, F. & Donald, A.M. Use of ESEM to image the spore adhesive of the marine alga enteromorpha in its natural hydrated state. Coll. Surf. B 27, 315–321 (2003).

    Article  CAS  Google Scholar 

  34. Celik, E. & Hascicek, Y.S. In situ hot stage ESEM evaluation of Ce)2 buffer layers on Ni tapes for YBCO coated conductors. Mater. Sci. En.g B 94, 176–180 (2002).

    Article  Google Scholar 

  35. Silva, I.F., Palma, C., Klimkiewicz, M. & Eser, S. Kinetics, in situ X-ray diffraction and environmental scanning electron microscopy of activated charcoal gasification catalyzed by vanadium oxide, molybdenum oxide and their eutectic alloy. Carbon 36, 861–868 (1998).

    Article  CAS  Google Scholar 

  36. Betrabet, H.S., McKinlay, J.K. & McGee, S.M. Dynamic observations of Sn-Pb solder reflow in a hot-stage ESEM. J. Mater. Sci. 27, 4009–4015 (1992).

    Article  CAS  Google Scholar 

  37. Hansson, K. et al. The influence of water vapour on the oxidation of MoSiO2 at 450?C. Mater. Sci. Forum. 369, 419–426 (2001).

    Article  Google Scholar 

  38. Schmid, B., Aas, N., Grong, O. & Odegard, R. In situ environmental scanning electron microscope observations of catalytic processes encountered in metal dusting corrosion on iron and nickel. Appl. Catal. A 215, 257–270 (2001).

    Article  CAS  Google Scholar 

  39. Millar, G.J., Nelson, M.L. & Uwins, P.J.R. In situ observation of structural changes in polycrystalline silver catalysts by ESEM. J. Chem. Soc. Faraday Trans. 94, 2015–2023 (1998).

    Article  CAS  Google Scholar 

  40. Tricart, J.P., Durrieu, J. & Lagarde, F. Imaging of pseudo oil base mud by ESEM. Rev. I. Fr. Petrole 52, 151–159 (1997).

    CAS  Google Scholar 

  41. Meredith, P., Donald, A.M. & Payne, R.S. Freeze drying: in situ observations using cryoESEM and DSC. J. Pharm. Sci. 85, 631–637 (1996).

    Article  CAS  Google Scholar 

  42. Mott, L., Shaler, S.M. & Groom, L.H. A technique to measure strain distributions in single wood pulp fibres. Wood Fiber Sci. 28, 429–437 (1996).

    CAS  Google Scholar 

  43. Thiel, B.L. & Donald, A.M. In situ mechanical testing of fully hydrated carrots (Daucus carota) in the ESEM. Ann. Bot. 82, 727–733 (1998).

    Article  Google Scholar 

  44. Kim, G.M. & Lee, D.H. FEG-ESEM investigation of micromechanical deformation processes in ultrafine monospherical SiO2 particle-filled polymer composites. J. Appl. Poly. Sci. 82, 785–789 (2001).

    Article  CAS  Google Scholar 

  45. Bos, H.L. & Donald, A.M. In situ ESEM deformation of flax fibres. J. Mater. Sci. 34, 3029–3034 (1999).

    Article  CAS  Google Scholar 

  46. Stokes, D.J. & Donald, A.M. In situ mechanical testing of hydrated breadcrumbs in the ESEM. J. Mater. Sci. 35, 599–607 (2000).

    Article  CAS  Google Scholar 

  47. Meredith, P. & Donald, A.M. Study of 'wet' polymer latex systems in environmental scanning electron microscopy: some imaging considerations. J. Microsc. 181, 23–35 (1996).

    Article  CAS  Google Scholar 

  48. Schnarr, H. & Futing, W. Some aspects of optimizing contrast for the investigation of joint materials in the ESEM. Scanning 19, 143–157 (1997).

    Google Scholar 

  49. Stokes, D.J., Thiel, B.L. & Donald, A.M. Direct observation of water-oil emulsion systems in the liquid stated by environmental SEM. Langmuir 14, 4402–4408 (1998).

    Article  CAS  Google Scholar 

  50. Phillips, M.R., Toth, M. & Drouin, D. Depletion layer imaging using a gaseous secondary electron detector in an environmental scanning electron microscope. Appl. Phys. Lett. 75, 76–78 (1999).

    Article  CAS  Google Scholar 

  51. Griffin, B. Charge contrast imaging of material growth and defects in environmental scanning electron microscopy - linking electron emission and cathodoluminescence. Scanning 22, 234–242 (2000).

    Article  CAS  Google Scholar 

  52. Toth, M. & Phillips, M.R. The role of induced contrast in images obtained using the ESEM. Scanning 22, 370–379 (2000).

    Article  CAS  Google Scholar 

  53. Mohan, A., Khanna, N., Hwu, J. & Joy, D.C. Secondary electron imaging in the variable pressure SEM. Scanning 20, 436–441 (1998).

    Article  Google Scholar 

  54. Zhu, S. & Cao, W. Direct observation of ferroelectric domains in LiTaO3 using ESEM. Phys. Rev. Lett. 79, 2258–2260 (1997).

    Google Scholar 

  55. Thiel, B.L. & Donald, A.M. Study of water in heterogeneous media using ESEM. J. Mol. Liq. 80, 207–230 (1999).

    Article  CAS  Google Scholar 

  56. Watt, G.R., Griffin, B.J. & Kinny, P.D. Charge contrast imaging of geological materials in the ESEM. Am. Mineral. 85, 1784–1794 (2000).

    Article  CAS  Google Scholar 

  57. Baroni, T.C., Griffin, B.J., Cornell, J.B., Roach, G.I.D. & Lincoln, F.J. Three-dimensional reconstruction of microstructures in gibbsite using charge contrast imaging. Scanning 24, 18–24 (2002).

    Article  CAS  Google Scholar 

  58. Toth, M., Daniels, D.R., Thiel, B.L. & Donald, A.M. Quantification of electron-ion recombination in an electron-beam-irradiated gas capacitor. J. Phys. D 35, 1796–1804 (2002).

    Article  CAS  Google Scholar 

  59. Carlton, R.A., Orton, E., Lyman, C.E. & Roberts, J.E. Qualitative analysis of solid phase synthesis reaction products by X-ray spectrometry. Microsc. Microanal. 3, 520–529 (1997).

    CAS  Google Scholar 

  60. Timofeeff, M.N., Lowenstein, T.K. & Blackburn, W.H. ESEM-EDS: an improved technique for major element chemical analysis of fluid inclusions. Chem. Geol. 164, 171–182 (2000).

    Article  CAS  Google Scholar 

  61. Sigee, D.C. Environmental SEM and X-ray microanalysis of biological materials. Mikrochimica Acta 15 (suppl.), 283–293 (1998).

    CAS  Google Scholar 

  62. Mansfield, J.F. X-ray analysis in the ESEM: a challenge or a contradiction. Mikrochimica Acta 132, 137–143 (2000).

    Article  CAS  Google Scholar 

  63. Griffin, B.J. & Browne, J.R. Fiber-optic based spectral cathodoluminescence: simple and economic option for use in conventional and environmental SEM. Microsc. Microanal. 6, 42–48 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

My thanks are due to all of my group who over the years have put so much work into developing ESEM, and stimulated frequent lively debate.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

FEI, the manufacturers of ESEM, support part of the work within the group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donald, A. The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature Mater 2, 511–516 (2003). https://doi.org/10.1038/nmat898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing