Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stripe phases from isotropic repulsive interactions

Abstract

One of the most striking signatures of self-organization is spontaneous pattern formation1,2. Among the morphologies observed, stripes are intrinsically fascinating and have potential for technological applications including nanolithography and nanoelectricity. Examples of materials featuring stripe patterns include Langmuir monolayers3, magnetic films4, lipid monolayers5, liquid crystals6 and polymer films7. Stripe formation is generally attributed to the competition between short-range attractive forces and long-range repulsion arising from dipole interactions8,9. Here we show that stripe phases may result from a different mechanism based on a purely repulsive isotropic short-range pair potential with two characteristic length scales. We consider a two-dimensional (2D) assembly of particles consisting of a hard core surrounded by a soft corona and find that at densities where the hard-and-soft core radii compete with each other, decreasing the temperature induces a transition from a disordered state to an orientationally ordered phase characterized by stripe patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of the model.
Figure 2: Structural properties at temperature T = 0.1 (NVT simulation).
Figure 3: Spatial configuration immediately above and below the transition to the stripe phase.
Figure 4: Thermodynamic properties at density ρ = 0.291 (NVT simulation).
Figure 5: Thermodynamic properties at pressure P = 0.75 (NPT simulation).

Similar content being viewed by others

References

  1. Ball, P. The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, 2001).

    Google Scholar 

  2. Bowman, C. & Newell, A.C. Natural patterns and wavelets. Rev. Mod. Phys. 70, 289–301 (1998).

    Article  Google Scholar 

  3. Mohwald, H. Direct characterization of monolayers in the air water interface. Thin Solid Films 159, 1–15 (1988).

    Article  Google Scholar 

  4. Seul, M. & Wolfe, R. Evolution of disorder in magnetic stripe domains. I. Transverse instabilities and disclination unbinding in lamellar patterns. Phys. Rev. A 46, 7519–7533 (1992).

    Article  CAS  Google Scholar 

  5. Keller, S.L. & McConnell, H.M. Stripe phases in lipid monolayers near a miscibility critical point. Phys. Rev. Lett. 82, 1602–1605 (1999).

    Article  CAS  Google Scholar 

  6. Maclennan, J. & Seul, M. Novel stripe textures in nonchiral liquid-crystal films. Phys. Rev. Lett. 69, 2082–2085 (1992).

    Article  CAS  Google Scholar 

  7. Harrison, C. et al. Mechanisms of ordering in stripe patterns. Science 290, 1558–1560 (2000).

    Article  CAS  Google Scholar 

  8. Seul, M. & Andelman, D. Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995).

    Article  CAS  Google Scholar 

  9. Stoycheva, A.D. & Singer, S.J. Stripe melting in a two-dimensional system with competing interactions. Phys. Rev. Lett. 84, 4657–4660 (2000).

    Article  CAS  Google Scholar 

  10. Landau, L.D. & Lifshitz, E.M. Landau Collected Papers (no.18) (ed. Ter Haar, D.) (Gordon and Breach, New York, 1965).

    Google Scholar 

  11. Kittel, C. Theory and structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946).

    Article  CAS  Google Scholar 

  12. Stell, G. & Hemmer, P.C. Phase transition due to softness of the potential core. J. Chem. Phys. 56, 4274–4286 (1970).

    Article  Google Scholar 

  13. Bolhuis, P. & Frenkel, D. Prediction of an expanded-to-condensed transition in colloidal crystals. Phys. Rev. Lett. 72, 2211–2214 (1994).

    Article  CAS  Google Scholar 

  14. Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S. & Stanley, H.E. Generic mechanism for generating a liquid–liquid phase transition. Nature 409, 692–695 (2001).

    Article  CAS  Google Scholar 

  15. Frenkel, D. & Smit, B. Understanding Molecular Simulation (Academic, London, 1996).

    Google Scholar 

  16. Weis, R.M. & McConnell, H.M. Two-dimensional chiral crystals of phospholipids. Nature 310, 47–49 (1984).

    Article  CAS  Google Scholar 

  17. Witten, T.A. Structured fluids. Phys. Today 21, 21–28 (July 1990).

    Article  Google Scholar 

  18. Hahm, J., Lopes, W.A., Jaeger, H.M. & Sibener, S.J. Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscopy. J. Chem. Phys. 109, 10111–10114 (1998).

    Article  CAS  Google Scholar 

  19. Hansen, J.P. & McDonald, I.R. Theory of Simple Liquids (Academic, London, 1976).

    Google Scholar 

  20. Watzlawek, M., Löwen, H. & Lykos, C.N. The anomalous structure factor of dense star polymer solutions. J. Phys: Condens. Matter 10, 8189–8205 (1998).

    CAS  Google Scholar 

  21. Callen, H.B. Thermodynamics (Wiley, New York, 1960).

    Google Scholar 

  22. Likos, C.N. Effective interactions in soft condensed matter physics. Phys. Rep. 348, 267–439 (2001).

    Article  CAS  Google Scholar 

  23. Russel, W.B., Saville, D.A. & Schowalter, W.R. Colloidal Dispersions (Cambridge Univ. Press, 1991).

    Google Scholar 

  24. Balagurusamy, V.S., Ungar, G., Percec, V. & Johanson, G. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J. Am. Chem. Soc. 119, 1539–1555 (1997).

    Article  CAS  Google Scholar 

  25. Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).

    Article  CAS  Google Scholar 

  26. Watzlawek, M., Likos, C.N. & Löwen, H. Phase diagram of star polymer solutions Phys. Rev. Lett. 82, 5289–5292 (1999).

    Article  CAS  Google Scholar 

  27. McConnell, G.A., Gast, A.P., Huang, J.S. & Smith, S.D. Disorder–order transitions in soft-sphere polymer micelles. Phys. Rev. Lett. 71, 2102–2105 (1993).

    Article  CAS  Google Scholar 

  28. Likos, C.N., Hoffmann, N., Löwen, H. & Louis, A. Exotic fluids and crystals of soft polymeric colloids. J. Phys: Condens. Matter 14, 7681–7698 (2002).

    CAS  Google Scholar 

  29. Ziherl, P. & Kamien, R.D. Soap froths and crystal structures. Phys. Rev. Lett. 85, 3528–3531 (2000).

    Article  CAS  Google Scholar 

  30. Ziherl, P. & Kamien, R.D. Maximizing entropy by minimizing area: toward a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ballone, E. Bruno, C. Caccamo, P. V. Giaquinta, F. Mallamace and, in particular, A. Coniglio for useful discussions. G.M. wishes to thank H. N. W. Lekkerkerker for suggestions and H. E. Stanley for directing his attention to the phase behaviour of shouldered potentials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpietro Malescio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malescio, G., Pellicane, G. Stripe phases from isotropic repulsive interactions. Nature Mater 2, 97–100 (2003). https://doi.org/10.1038/nmat820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing