Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A functional zeolite analogue assembled from metalloporphyrins

Abstract

The assembly of molecular building blocks with metal ions genera-ting microporous network solids has been the focus of intense activity1,2,3,4,5,6,7,8,9,10,11,12. Because of their potential applications associated with channels and cavities, such materials have been examined for size- and shape-selective catalysis, separations, sensors, molecular recognition and nanoscale reactors. Within this context, assemblies of robust and chemically versatile porphyrin and metalloporphyrin building blocks remain rare. Supramolecular architectures of porphyrin solids based on weak van der Waals interactions13,14, hydrogen bonding15,16 and metal-ligand coordination networks17,18,19,20,21,22,23 have been reported. Although there are frequent allusions to zeolite-like microporosity from crystallography and loss of initial guest solvent molecules, evidence of functional microporous behaviour is scarce. We have demonstrated repeatable sorption–desorption with high selectivity on the basis of size, shape and functional group of the sorbate by a microporous metalloporphyrin solid in analogy to zeolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular diagrams of the PIZA-1 network.
Figure 2: Size-, shape-, and functional-group selectivity as probed by thermal desorption of guest molecules.
Figure 3: Selective adsorption of water from benzene, toluene and tetrahydrofuran (THF) solutions, determined by Karl–Fischer coulometric titration.

Similar content being viewed by others

References

  1. Pinnavaia, T.J. & Thorpe, M.F. Access in Nanoporous Materials (ed. Thorpe, M.F.) (Plenum, New York, 1995).

    Google Scholar 

  2. Yaghi, O.M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 378, 703–706 (1995).

    Article  CAS  Google Scholar 

  3. Janiak, C. Functional organic analogues of zeolites based on metal-organic coordination frameworks. Angew. Chem. Int. Edn Engl. 36, 1431–1434 (1997).

    Article  CAS  Google Scholar 

  4. Russell, V., Evans, C.C., Li, W. & Ward, M.D. Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity. Science 276, 575–579 (1997).

    Article  CAS  Google Scholar 

  5. Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn 71, 1739–1753 (1998).

    Article  CAS  Google Scholar 

  6. Aoyama, Y. Functional organic zeolite analogues. Top. Curr. Chem. 198, 132–161 (1998).

    Google Scholar 

  7. Cheetham, A.K., Ferey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Edn Engl. 38, 3268–3292 (1999).

    Article  CAS  Google Scholar 

  8. Barton, T.J. et al. Tailored porous materials. Chem. Mater. 11, 2633–2656 (1999).

    Article  CAS  Google Scholar 

  9. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, G.A. & Williams, I.D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]. Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  10. Li, H., Eddaoudi, M., O'Keefe, M. & Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  11. Seo, J.S. et al. A homochiral metal-organic material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  12. Chen, B., Eddaoudi, M., Hyde, S.T., O'Keeffe, M. & Yaghi, O.M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001).

    Article  CAS  Google Scholar 

  13. Byrn, M.P., Curtis, C.J., Khan, S.I., Sawin, P.A., Tsurumi, R. & Strouse, C.E. Tetraarylporphyrin sponges. Composition, structural systematics and applications of a large class of programmable lattice clatharates. J. Am. Chem. Soc. 112, 1865–1874 (1990).

    Article  CAS  Google Scholar 

  14. Krupitsky, H., Stein, Z. & Goldberg, I. Structural patterns in clathrates and crystalline complexes of zinc-tetra(4-chlorophenyl)porphyrin and zinc-tetra(4-fluorophenyl)porphyrin. J. Inclus. Phenom. Mol. 20, 211–232 (1995).

    Article  Google Scholar 

  15. Bhyrappa, P., Wilson, S.R. & Suslick, K.S. Hydrogen-bonded porphyrinic solids: supramolecular networks of octahydroxy porphyrins. J. Am. Chem. Soc. 119, 8492–8502 (1997).

    Article  CAS  Google Scholar 

  16. Bhyrappa, P. & Suslick, K.S. Supramolecular networks of octahydroxy porphyrins. Supramol. Chem. 9, 169–174 1998).

    Article  CAS  Google Scholar 

  17. Abrahams, B.F., Hoskins, B.F., Michall, D.M. & Robson, R. Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727–729 (1994).

    Article  CAS  Google Scholar 

  18. Hagrman, D., Hagrman, P.J. & Zubieta, J. Solid-state coordination chemistry: the self-assembly of microporous organic-inorganic frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters. Angew. Chem. Int. Edn Engl. 38, 3065–3168 (1999).

    Google Scholar 

  19. Pan, L., Noll, B.C. & Wang, X. Self-assembly of free-base tetrapyridylporphyrin units by metal ion coordination. Chem. Commun. 157–158 (1999).

  20. Diskin-Posner, Y., Dahal, S. & Goldberg, I. New effective synthons for supramolecular self-assembly of meso-carboxylphenylporphyrins. Chem. Commun. 585–586 (2000).

  21. Lin, K.J. SMTP-a: the first functionalized metalloporphyrin molecular sieves with large channels. Angew. Chem. Int. Edn Engl. 38, 2730–32 (1999).

    Article  CAS  Google Scholar 

  22. Sharma, C.V.K. et al. Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphyrins. J. Am. Chem. Soc. 121, 1137–1144 (1999).

    Article  CAS  Google Scholar 

  23. Kosal, M.E. & Suslick, K.S. Microporous porphyrin and metalloporphyrin materials. J. Solid State Chem. 152, 87–98 (2000).

    Article  CAS  Google Scholar 

  24. Suslick, K.S. & Van Deusen-Jeffries, S. in Comprehensive Supramolecular Chemistry (ed. Suslick, K.S.) 1–30 (Elsevier, Oxford, 1996).

    Google Scholar 

  25. Catterick, J., Hursthouse, M.B., New, D.B. & Thorton, P.J. X-ray crystal structure and magnetic properties of a trinuclear cobalt(II) carboxylate. Chem. Commun. 843–844 (1974).

  26. Rardin, R.L. et al. Synthesis and characterization of the linear trinuclear complexes [M3II(O2CCH3)6(biphme)2], M = Mn, Fe. Angew. Chem. 29, 812–814 (1990).

    Article  Google Scholar 

  27. Connolly, M.L. Computation of molecular volume. J. Am. Chem. Soc. 107, 1118–1124 (1985).

    Article  CAS  Google Scholar 

  28. Voorintholt, R., Kosters, M.T., Vegter, G., Vriend, G. & Hol, W.G.J. A very fast program for visualizing protein surfaces, channels and cavities. J. Mol. Graph. 7, 243–245 (1989).

    Article  CAS  Google Scholar 

  29. Breck, D.W. Zeolite Molecular Sieves (Robert E. Krieger, Malabar, 1984).

    Google Scholar 

  30. Szostak, R. Molecular Sieves (Blackie, London, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank Jim Lenke and Jan Nimrick of the UIUC School of Chemical Sciences Microanalysis Laboratory for assistance with TGA, and Theresa Prussak for assistance in obtaining single-crystal X-ray diffraction data. This work has been supported in part by the US National Institutes of Health, and in part by the US Department of Energy, Division of Materials Sciences through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Suslick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosal, M., Chou, JH., Wilson, S. et al. A functional zeolite analogue assembled from metalloporphyrins. Nature Mater 1, 118–121 (2002). https://doi.org/10.1038/nmat730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing