Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of defect-mediated cluster nucleation

Abstract

Ion implantation is widely used to introduce electrically or optically active dopant atoms into semiconductor devices1. At high concentrations, the dopants can cluster and ultimately form deactivating precipitates2,3, but deliberate nanocrystal formation offers an approach to self-assembled device fabrication. However, there is very little understanding of the early stages of how these precipitates nucleate and grow1, in no small part because it requires imaging an inhomogenous distribution of defects and dopant atoms buried inside the host material. Here we demonstrate this, and address the long-standing question of whether the cluster nucleation is defect-mediated or spontaneous. Atomic-resolution illustrations are given for the chemically dissimilar cases of erbium and germanium implanted into silicon carbide. Whereas interstitial loops act as nucleation sites in both cases, the evolution of nanocrystals is strikingly different: Erbium is found to gather in lines, planes and finally three-dimensional precipitates, whereas germanium favours compact, three-dimensional structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determining the spatial resolution and sensitivity of the STEM.
Figure 2: HAADF images of the dislocations (marked by , the horizontal dash symbolizes the additional SiC monolayer) at the edge of interstitial loops.
Figure 3: After annealing, HAADF imaging shows that the Er atoms have segregated in precipitates of widely differing sizes.
Figure 4: HAADF images showing the different arrangements of Ge atoms (introduced by ion implantation) at dislocation cores and their remnants after annealing for 180 s at 1,600 °C.

Similar content being viewed by others

References

  1. Fahey, P.M., Griffin, P.B. & Plummer, J.D. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289–384 (1989).

    Article  CAS  Google Scholar 

  2. Fair, R.B. & Weber, G.R. Effect of complex formation on diffusion of arsenic in silicon. J. Appl. Phys. 44, 273–279 (1973).

    Article  CAS  Google Scholar 

  3. Chadi, D.J. et al. Fermi-level pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4834–4837 (1997).

    Article  CAS  Google Scholar 

  4. Choyke, W.J. & Patrick, L. Photoluminescence of radiation defects in cubic SiC: localized modes and Jahn-Teller effect. Phys. Rev. B 4, 1843–1847 (1971).

    Article  Google Scholar 

  5. Greulich-Weber, S. EPR and ENDOR investigations of shallow impurities in SiC polytypes. Phys. Status Solidi A 162, 95–151 (1997).

    Article  CAS  Google Scholar 

  6. Spitznagel, J.A. et al. Ion beam modification of 6H/15R SiC crystals. Nucl. Instrum. Methods B 16, 237–243 (1986).

    Article  Google Scholar 

  7. Lhermitte-Sebiret, I., Vicens, J., Chermann, J.L., Levalois, M. & Paumier, E. Transmission electron microscopy and high-resolution electron microscopy studies of structural defects induced in 6H a-SiC single crystals irradiated by swift Xe ions. Phil. Mag. 69, 237–253 (1994).

    Article  Google Scholar 

  8. Lebedev, O.L., Van Tendeloo, G., Suvorova, A.A., Usov, I.O. & Suvorov, A.V. HREM study of ion implantation in 6H-SiC at high temperatures. J. Electron. Microsc. 46, 271–279 (1997).

    Article  CAS  Google Scholar 

  9. Heera, V., Reuther, H., Stoemenos, J. & Pecz, B. Phase formation due to high dose aluminum implantation into silicon carbide. J. Appl. Phys. 87, 78–85 (2000).

    Article  CAS  Google Scholar 

  10. Kaiser, U. Nanocrystal formation in hexagonal SiC after Ge ion implantation. J. Electron. Microsc. 50, 251–263 (2001).

    Article  CAS  Google Scholar 

  11. Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H. & Gossmann, H.-J.L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    Article  CAS  Google Scholar 

  12. Muller, D.A. & Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron. Microsc. 50, 219–226 (2001).

    CAS  Google Scholar 

  13. Batson, P.E. Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic column sensitivity. Nature 366, 727–728 (1993).

    Article  CAS  Google Scholar 

  14. Browning, N.D., Chisholm, M.M. & Pennycook, S.J. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993).

    Article  CAS  Google Scholar 

  15. Muller, D.A. et al. The electronic structure at the atomic scale of ultra-thin gate oxides. Nature 399, 758–761 (1999).

    Article  CAS  Google Scholar 

  16. Loane, R.F., Kirkland, E.J. & Silcox, J. Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr. A 44, 912–927 (1988).

    Article  Google Scholar 

  17. Howie, A. Image contrast and localized signal selection techniques. J. Microsc. 17, 11–23 (1979).

    Article  Google Scholar 

  18. Pennycook, S.J. Z Contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989).

    Article  Google Scholar 

  19. Perovic, D.D., Rossow, C.J. & Howie, A. Imaging elastic strains in high-angle annular dark-field scanning-transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993).

    Article  CAS  Google Scholar 

  20. Hillyard, S.E. & Silcox, J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 6–17 (1995).

    Article  CAS  Google Scholar 

  21. Weissker, H.C., Furthmüller, J. & Bechstedt, F. First-principles of optical properties: application to embedded Ge and Si dots. Phys. Status Solidi B 224, 769–773 (2001).

    Article  CAS  Google Scholar 

  22. Choyke, W.J., Devaty, R.P., Clemen, L.L. & Yoganathan, M. Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R and 3C SiC. Appl. Phys. Lett. 65, 1668–1670 (1994).

    Article  CAS  Google Scholar 

  23. Wesch, W., Heft, A., Wendler, E., Bachmann, T. & Glaser, E. High temperature ion implantation of silicon carbide. Nucl. Instrum. Methods B 96, 335–338 (1995).

    Article  CAS  Google Scholar 

  24. Choyke, W.J., Matsunami, H. & G., P. Silicon Carbide (Wiley-VCH, Berlin, 1997).

    Google Scholar 

  25. Tairov, Y.M. & Vodakov, Y.A. in Group IV Materials (ed. Pankove, J.I.) 35 (Springer, New York, 1977).

    Google Scholar 

  26. Usov, I.O., Suvorova, A.A., Sokolov, V.V., Kudryavtsev, Y.A. & Suvorov, A.V. Transient enhanced diffusion of aluminum in SiC during high temperature ion implantation. J. Appl. Phys. 86, 6039–6042 (1999).

    Article  CAS  Google Scholar 

  27. Skorupa, W., Heera, V., Pacaud, Y. & Weishart, H. Ion beam processing of single crystalline silicon carbide. Nucl. Instrum. Methods B 120, 114–120 (1996).

    Article  CAS  Google Scholar 

  28. Brown, L.M., Allen, G. & Flewitt, P. Nanochemistry of grain boundaries. Phys. World 45–50 (May, 1997).

Download references

Acknowledgements

We are grateful to Jim Choyke and Igor Khodos for discussions and Christian Schubert and Gunnar Pasold for ion implantation and annealing. This work has been supported by the German Foundation DFG SFB 196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

FIGURE 1 A typical SiC matrix defect decorated by Er-atom columns together with the EELS spectrum of the Er M edge obtained from the single Er atom column the arrow is pointing to.

 FIGURE 2. An expanded view of the accordion or 'christmas-tree'-like Er cluster of Fig. 3c.This is a commonly observed Er structure. From the image contrast, each brighter dot contains approximately 10 or so Er atoms, so this is an end of view of a two-dimensional Errich platelet. (PDF 950 kb)

 FIGURE 3 HRTEM images of the dislocations at the edge of interstitial loops — (a) before and (b) after annealing for 180° sec at 1600 °C. Lattice bending maps showing the origins of the strains for (a) & (b) are shown in (c) & (d) respectively. (e) HAADF image of a dislocation before annealing.The white spots are isolated Er atoms scattered randomly about the matrix — none has yet segregated at the dislocation core. (f) After annealing the Er has segregated to the dislocations, and very little remains in the matrix. HRTEM from a JEOL 3010, HAADF from a JEOL 2010F. 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, U., Muller, D., Grazul, J. et al. Direct observation of defect-mediated cluster nucleation. Nature Mater 1, 102–105 (2002). https://doi.org/10.1038/nmat729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing