Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation

Abstract

The photoelectrochemical splitting of water into hydrogen and oxygen requires a semiconductor to absorb light and generate electron–hole pairs, and a catalyst to enhance the kinetics of electron transfer between the semiconductor and solution. A crucial question is how this catalyst affects the band bending in the semiconductor, and, therefore, the photovoltage of the cell. We introduce a simple and inexpensive electrodeposition method to produce an efficient n-Si/SiOx/Co/CoOOH photoanode for the photoelectrochemical oxidation of water to oxygen. The photoanode functions as a solid-state, metal–insulator–semiconductor photovoltaic cell with spatially non-uniform barrier heights in series with a low overpotential water-splitting electrochemical cell. The barrier height is a function of the Co coverage; it increases from 0.74 eV for a thick, continuous film to 0.91 eV for a thin, inhomogeneous film that has not reached coalescence. The larger barrier height leads to a 360 mV photovoltage enhancement relative to a solid-state Schottky barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of photo-oxidized electrodeposited cobalt on (100) n-Si.
Figure 2: Photoelectrochemical performance of the n-Si/SiOx/Co/CoOOH photoanode.
Figure 3: Solid-state characterization of the electrodeposited n-Si/SiOx/Co junction.
Figure 4: Schematic of solid-state Schottky barrier and electrodeposited n-Si/SiOx/Co/CoOOH junctions.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  3. Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nature Mater. 13, 81–86 (2014).

    Article  CAS  Google Scholar 

  4. Gamelin, D. R. Water splitting: Catalyst or spectator? Nature Chem. 4, 965–967 (2012).

    Article  CAS  Google Scholar 

  5. Guo, L. et al. Tunnel barrier photoelectrodes for solar water splitting. Appl. Phys. Lett. 97, 063111 (2010).

    Article  Google Scholar 

  6. Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nature Mater. 12, 562–568 (2013).

    Article  CAS  Google Scholar 

  7. Switzer, J. A. The n-silicon/thallium(III) oxide heterojunction photoelectrochemical solar cell. J. Electrochem. Soc. 133, 722–728 (1986).

    Article  CAS  Google Scholar 

  8. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Mater. 10, 539–544 (2011).

    Article  CAS  Google Scholar 

  9. Fan, F.-R. F., Keil, R. G. & Bard, A. J. Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers. J. Am. Chem. Soc. 105, 220–224 (1983).

    Article  CAS  Google Scholar 

  10. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Article  CAS  Google Scholar 

  11. Lauwers, A. et al. Electrical transport in (100)CoSi2/Si contacts. J. Appl. Phys. 77, 2525–2536 (1995).

    Article  CAS  Google Scholar 

  12. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  Google Scholar 

  13. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nature Mater. 11, 550–557 (2012).

    Article  CAS  Google Scholar 

  14. Koza, J. A., Hull, C. M., Liu, Y.-C. & Switzer, J. A. Deposition of β-Co(OH)2 films by electrochemical reduction of tris(ethylenediamine)cobalt(III) in alkaline solution. Chem. Mater. 25, 1922–1926 (2013).

    Article  CAS  Google Scholar 

  15. Marsh, D. A. et al. Water oxidation using a cobalt monolayer prepared by underpotential deposition. Langmuir 29, 14728–14732 (2013).

    Article  CAS  Google Scholar 

  16. Young, E. R., Costi, R., Paydavosi, S., Nocera, D. G. & Bulović, V. Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy Environ. Sci. 4, 2058–2061 (2011).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. J. Am Chem. Soc. 136, 6191–6194 (2014).

    Article  CAS  Google Scholar 

  18. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  19. Munford, M. L., Sartorelli, M. L., Seligman, L. & Pasa, A. A. Morphology and magnetic properties of Co thin films electrodeposited on Si. J. Electrochem. Soc. 149, C274–C279 (2002).

    Article  CAS  Google Scholar 

  20. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14. The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article  CAS  Google Scholar 

  21. Sze, S. Physics of Semiconductor Devices 2nd edn (Wiley-Interscience, 1981).

    Google Scholar 

  22. Card, H. C. & Rhoderick, E. H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4, 1589–1601 (1971).

    Article  CAS  Google Scholar 

  23. Ng, K. K. & Card, H. C. A comparison of majority- and minority-carrier silicon MIS solar cells. IEEE Trans. Electron. Dev. 27, 716–724 (1980).

    Article  Google Scholar 

  24. Cowley, A. M. & Sze, S. M. Surface states and barrier height of metal–semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965).

    Article  CAS  Google Scholar 

  25. Tung, R. T. Electron transport at metal–semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992).

    Article  CAS  Google Scholar 

  26. Nakato, Y., Ueda, K., Yano, H. & Tsubomura, H. Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion. J. Phys. Chem. 92, 2316–2324 (1988).

    Article  CAS  Google Scholar 

  27. Rossi, R. C. & Lewis, N. S. Investigation of the size-scaling behavior of spatially nonuniform barrier height contacts to semiconductor surfaces using ordered nanometer-scale nickel arrays on silicon electrodes. J. Phys. Chem. B 105, 12303–12318 (2001).

    Article  CAS  Google Scholar 

  28. Reineke, R. & Memming, R. High barrier GaAs/metal Schottky junctions produced by electrochemical metal deposition. Surf. Sci. 192, 66–80 (1987).

    Article  CAS  Google Scholar 

  29. Vereecken, P. M., Vanalme, G. M., Van Meirhaeghe, R. L., Cardon, F. & Gomes, W. P. Electrochemical reduction vs. vapour deposition for n-GaAs/Cu Schottky-barrier formation: A comparative study. J. Chem. Soc. Faraday Trans. 92, 4069–4075 (1996).

    Article  CAS  Google Scholar 

  30. Lewerenz, H. J. Operational principles of electrochemical nanoemitter solar cells for photovoltaic and photoelectrocatalytic applications. J. Electroanal. Chem. 662, 184–195 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DE-FG02-08ER46518.

Author information

Authors and Affiliations

Authors

Contributions

J.C.H. and A.T.L. prepared the samples and performed all measurements. J.C.H. and J.A.S. wrote the manuscript. J.A.S. directed the research.

Corresponding author

Correspondence to Jay A. Switzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, J., Landers, A. & Switzer, J. An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation. Nature Mater 14, 1150–1155 (2015). https://doi.org/10.1038/nmat4408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing