Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Long-term storage of spent nuclear fuel

To design reliable and safe geological repositories it is critical to understand how the characteristics of spent nuclear fuel evolve with time, and how this affects the storage environment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructure of spent fuel and the distribution of fission products and actinides after irradiation in a reactor.
Figure 2: Chemical processes that may affect the alteration of spent fuel in contact with groundwater.
Figure 3: Pourbaix diagrams for U and Pu.

References

  1. International Panel on Fissile Materials Managing Spent Fuel from Nuclear Power Reactors – Experience and Lessons from Around the World (eds Feiveson, H., Mian, Z., Ramana, M. V. & von Hippel, F.) 1–186 (IPFM, 2011).

  2. Konings, R. J. M., Wiss, T. & Beneš, O. Nature Mater. 14, 247–252 (2015).

    Article  CAS  Google Scholar 

  3. Kleykamp, H. J. Nucl. Mater. 131, 221–246 (1985).

    Article  CAS  Google Scholar 

  4. Hedin, A. Spent Nuclear Fuel – How Dangerous is it? Technical Report TR-97–13 1–60 (SKB, 1997).

    Google Scholar 

  5. Alvarez, R. et al. Sci. Global Security 11, 1–51 (2003).

    Article  Google Scholar 

  6. Wiss, T. J. et al. J. Nucl. Mater. 451, 198–206 (2014).

    Article  CAS  Google Scholar 

  7. Johnson, L. H. & Shoesmith, D. W. in Radioactive Waste Forms for the Future (eds Lutze, W. & Ewing, R. C.) 635–698 (Elsevier, 1988).

    Google Scholar 

  8. Grambow, B. J. Contaminant Hydrology 102, 180–186 (2008).

    Article  CAS  Google Scholar 

  9. Shoesmith, D. W. J. Nucl. Mater. 282, 1–31 (2000).

    Article  CAS  Google Scholar 

  10. Grambow, B. et al. Source Term for Performance Assessment of Spent Fuel as a Waste Form EUR19140 Report 1–355 (Euratom, 2000).

    Google Scholar 

  11. Poinssot, C. et al. Synthesis on the Spent Fuel Long Term Evolution CEA Report CEA-R-6084 Vols I and II (2001).

    Google Scholar 

  12. Johnson, L., Ferry, C., Poinssot, C. & Lovera, P. J. Nucl. Mater. 346, 56–65 (2005).

    Article  CAS  Google Scholar 

  13. Bruno, J. & Ewing, R. C. Elements 2, 343–349 (2006).

    Article  CAS  Google Scholar 

  14. Grambow, B. Appl. Geochem. 49, 237–246 (2014).

    Article  CAS  Google Scholar 

  15. Chen, F., Burns, P. C. & Ewing R. C. J. Nucl. Mater. 278, 225–232 (2000).

    Article  CAS  Google Scholar 

  16. Maher, K., Bargar, J. R. & Brown, G. E. Jr Inorganic Chem. 52, 3510–3532 (2013).

    Article  CAS  Google Scholar 

  17. Geckeis, H. et al. Chem. Rev. 113, 1016–1062 (2013).

    Article  CAS  Google Scholar 

  18. Novikov, A. P. et al. Science 314, 638–641 (2006).

    Article  CAS  Google Scholar 

  19. Grambow, B. Elements 2, 357–364 (2006).

    Article  Google Scholar 

  20. Ewing, R. C. & Weber, W. J. in The Chemistry of the Actinides and Transactinide Elements Vol. 6 (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) Ch. 35, 3813–3888 (Springer, 2010).

    Book  Google Scholar 

  21. Weber, W. J. & Ewing, R. C. in Uranium: Cradle to Grave (eds Burns, P. C. & Sigmon, G. E.) 43, 317–336 (Mineralogical Association of Canada, 2013).

    Google Scholar 

  22. von Hippel, F., Ewing, R., Garwin, R. & Macfarlane, A. Nature 485, 167–168 (2012).

    Article  CAS  Google Scholar 

  23. Report of the Plutonium Disposition Working Group Analysis of Surplus Weapon-Grade Plutonium Disposition Options (US DOE, 2014).

  24. Buck, E. C., Hanson, B. D. & McNamara, B. K. in Energy, Waste, and the Environment: A Geochemical Perspective Special Publication 236 (eds Gieré, R. & Stille, P.) 65–88 (The Geological Society of London, 2004).

    Google Scholar 

  25. Finch, R. J. & Ewing, R. C. J. Nucl. Mater. 190, 133–156 (1992).

    Article  CAS  Google Scholar 

  26. Burns, P. C. & Klingensmith, A. L. Elements 2, 351–356 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.C.E. is grateful for support from the Energy Frontier Research Center Materials Science of Actinides funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0001089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney C. Ewing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewing, R. Long-term storage of spent nuclear fuel. Nature Mater 14, 252–257 (2015). https://doi.org/10.1038/nmat4226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing