Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2

Abstract

Dirac and Weyl semimetals are 3D analogues of graphene in which crystalline symmetry protects the nodes against gap formation1,2,3. Na3Bi and Cd3As2 were predicted to be Dirac semimetals4,5, and recently confirmed to be so by photoemission experiments6,7,8. Several novel transport properties in a magnetic field have been proposed for Dirac semimetals2,9,10,11. Here, we report a property of Cd3As2 that was unpredicted, namely a remarkable protection mechanism that strongly suppresses backscattering in zero magnetic field. In single crystals, the protection results in ultrahigh mobility, 9 × 106 cm2 V−1 s−1 at 5 K. Suppression of backscattering results in a transport lifetime 104 times longer than the quantum lifetime. The lifting of this protection by the applied magnetic field leads to a very large magnetoresistance. We discuss how this may relate to changes to the Fermi surface induced by the applied magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transport measurements in a series of Cd3As2 samples.
Figure 2: Conversion of the resistivity matrix ρij to the conductivity matrix σij.
Figure 3: Magnetoresistance curves ρxx(H, θ) and SdH oscillations in tilted H in Cd3As2 at 2.5 K in Samples A1 and B7.
Figure 4: Shubnikov–de Haas (SdH) oscillations in Samples A1 and B7 at 2.5 K.

Similar content being viewed by others

References

  1. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  2. Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  3. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. Andrei Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Article  Google Scholar 

  4. Wang, Z. J. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  Google Scholar 

  5. Wang, Z. J., Weng, H. M., Wu, Q. S., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  6. Sergey, B. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  Google Scholar 

  7. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  8. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    Article  CAS  Google Scholar 

  9. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  Google Scholar 

  10. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  Google Scholar 

  11. Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  CAS  Google Scholar 

  12. Mazhar, N. et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem. 53, 4062–4067 (2014).

    Article  Google Scholar 

  13. Mase, S., von Molnar, S. & Lawson, A. W. Galvanomagnetic tensor of bismuth at 20.4° K. Phys. Rev. 127, 1030–1045 (1962).

    Article  CAS  Google Scholar 

  14. Hartman, R. Temperature dependence of the low-field galvanomagnetic coefficients of bismuth. Phys. Rev. 181, 1070–1086 (1969).

    Article  CAS  Google Scholar 

  15. Montgomery, H. C. Method for measuring electrical resistivity of anisotropic materials. J. Appl. Phys. 42, 2971–2975 (1971).

    Article  CAS  Google Scholar 

  16. Rosenman, I. Effet Shubnikov de Haas dans Cd3As2: Forme de la surface de Fermi et modele non parabolique de la bande de conduction. J. Phys. Chem. Solids 30, 1385–1402 (1969).

    Article  CAS  Google Scholar 

  17. Iwami, M., Matsunami, H. & Tanaka, T. Galvanomagnetic effects on single crystals of cadmium arsenide. J. Phys. Soc. Jpn 31, 768–775 (1971).

    Article  CAS  Google Scholar 

  18. Blom, F. A. P., Neve, J. J. & Nouwens, P. A. M. On the conduction band ansisotropy in semimagnetic semiconducting (Cd1−xMnx)3As2 alloys. Physica B 117, 470–472 (1983).

    Article  Google Scholar 

  19. Schlom, D. G. & Pfeiffer, L. N. Upward mobility rocks! Nature Mater. 9, 881–883 (2010).

    Article  CAS  Google Scholar 

  20. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 . Nature Mater. 13, 851–856 (2014).

    Article  CAS  Google Scholar 

  21. Paalanen, M. A., Tsui, D. C. & Hwang, J. C. M. Parabolic magnetoresistance from the interaction effect in a two-dimensional electron-gas. Phys. Rev. Lett. 51, 2226–2229 (1983).

    Article  CAS  Google Scholar 

  22. Harrang, J. P. et al. Quantum and classical mobility determination of the dominant scattering mechanism in the two-dimensional electron-gas of an AlGaAs/GaAs heterojunction. Phys. Rev. B 32, 8126–8135 (1985).

    Article  CAS  Google Scholar 

  23. Coleridge, P. T. Small-angle scattering in 2-dimensional electron gases. Phys. Rev. B 44, 3793–3801 (1991).

    Article  CAS  Google Scholar 

  24. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  CAS  Google Scholar 

  25. Zhang, W. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett. 106, 156808 (2011).

    Article  Google Scholar 

  26. Qu, D. X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    Article  CAS  Google Scholar 

  27. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  CAS  Google Scholar 

  28. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  Google Scholar 

  29. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  30. He, L. P. et al. Quantum transport evidence for a three-dimensional Dirac semimetal phase in Cd2As2 . Preprint at http://arXiv.org/abs/1404.2557 (2014)

  31. Feng, J. et al. Large linear magnetoresitance in Dirac semi-metal Cd2As2 with Fermi surfaces close to the Dirac points. Preprint at http://arXiv.org/abs/1405.6611 (2014)

Download references

Acknowledgements

We thank A. Bernevig, S. Parameswaran, A. Vishwanath and A. Yazdani for valuable discussions, and N. Yao for assistance with EDX measurements. N.P.O. is supported by the Army Research Office (ARO W911NF-11-1-0379). R.J.C. and N.P.O. are supported by a MURI grant on Topological Insulators (ARO W911NF-12-1-0461) and by the US National Science Foundation (grant number DMR 0819860). T.L. acknowledges scholarship support from the Japan Student Services Organization. Some of the experiments were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

T.L. performed and analysed the measurements. Q.G., M.N.A. and R.J.C. grew the crystals and performed the materials composition and structural analyses. M.L. built a key apparatus. R.J.C. and N.P.O. conceived the project and analysed the results. All authors contributed to preparing the manuscript.

Corresponding author

Correspondence to N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Gibson, Q., Ali, M. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nature Mater 14, 280–284 (2015). https://doi.org/10.1038/nmat4143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing