Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions

Subjects

Abstract

In polymer–colloid mixtures1,2, non-adsorbing polymers dispersed with much larger colloids provide a universal yet specific entropic attraction between the colloids3,4,5,6,7,8. Such so-called depletion interaction2,3 arises from an osmotic-pressure imbalance caused by the polymers and is considered to be independent of temperature. Here we show that, for the most commonly used polymer–colloid depletion systems5,6, the polymer undergoes a crossover from non-adsorbing to adsorbing9 and that, consequently, the effective colloidal interactions depend on temperature. We also find that a combination of the enthalpic (polymer bridging10,11,12) and entropic (polymer exclusion2,3,4) interactions, both attractive, leads to a re-entrant regime where the colloids are dispersed and form solids both on heating and on cooling. We provide a simple model to explain the observed transitions and to fill the theoretical gap at the polymer-adsorption crossover2,9. Our findings open possibilities for colloidal self-assembly5,13, the formation of colloidal crystals14,15 and glasses16, and the behaviour of temperature-controlled viscoelastic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Re-entrant phase transitions from depletion interactions.
Figure 2: Phase behaviour of the polymer–colloid system.
Figure 3: Simple theoretical model and intercolloid distance test.
Figure 4: Temperature-dependent adsorption energy.
Figure 5: Protocol-dependent optic-elastic material.

Similar content being viewed by others

References

  1. De Gennes, P. G. Ultradivided matter. Nature 412, 385–385 (2001).

    Article  CAS  Google Scholar 

  2. Russel, W. B., Saville, D. A. & Schowalter, W. R. Colloidal Dispersions (Cambridge Univ. Press, 1989).

    Book  Google Scholar 

  3. Asakura, S. & Oosawa, F. On interaction between 2 bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

    Article  CAS  Google Scholar 

  4. Dinsmore, A., Yodh, A. & Pine, D. Entropic control of particle motion using passive surface microstructures. Nature 383, 239–242 (1996).

    Article  CAS  Google Scholar 

  5. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  Google Scholar 

  6. Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787–10792 (2012).

    Article  CAS  Google Scholar 

  7. Perry, R. W., Meng, G., Dimiduk, T. G., Fung, J. & Manoharan, V. N. Real-space studies of the structure and dynamics of self-assembled colloidal clusters. Faraday Discuss. 159, 211–234 (2012).

    Article  CAS  Google Scholar 

  8. Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

    Article  CAS  Google Scholar 

  9. De Gennes, P. G. Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules 14, 1637–1644 (1981).

    Article  CAS  Google Scholar 

  10. Dickinson, E. & Eriksson, L. Particle flocculation by adsorbing polymers. Adv. Colloid Interface Sci. 34, 1–29 (1991).

    Article  CAS  Google Scholar 

  11. De Gennes, P. G. Polymers at an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15, 492–500 (1982).

    Article  CAS  Google Scholar 

  12. Healy, T. W. & Mer, V. K. L. The adsorption–flocculation reactions of a polymer with an aqueous colloidal dispersion. J. Phys. Chem. 66, 1835–1838 (1962).

    Article  CAS  Google Scholar 

  13. Sacanna, S. et al. Shaping colloids for self-assembly. Nature Commun. 4, 1688 (2013).

    Article  Google Scholar 

  14. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Phys. 10, 73–79 (2014).

    Article  CAS  Google Scholar 

  15. Meng, G., Paulose, J., Nelson, D. R. & Manoharan, V. N. Elastic instability of a crystal growing on a curved surface. Science 343, 634–637 (2014).

    Article  CAS  Google Scholar 

  16. Fris, J. A. R., Appignanesi, G. A. & Weeks, E. R. Experimental verification of rapid, sporadic particle motions by direct imaging of glassy colloidal systems. Phys. Rev. Lett. 107, 065704 (2011).

    Article  Google Scholar 

  17. Dijkstra, M., Brader, J. M. & Evans, R. Phase behaviour and structure of model colloid–polymer mixtures. J. Phys. Condens. Matter 11, 10079 (1999).

    Article  CAS  Google Scholar 

  18. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).

    Article  Google Scholar 

  19. Warren, P. B., Ilett, S. M. & Poon, W. C. K. Effect of polymer nonideality in a colloid–polymer mixture. Phys. Rev. E 52, 5205–5213 (1995).

    Article  CAS  Google Scholar 

  20. Branca, C. et al. Study of conformational properties of poly (ethylene oxide) by SANS and PCS techniques. Phys. Scr. 67, 551–554 (2003).

    Article  CAS  Google Scholar 

  21. Badaire, S., Cottin-Bizonne, C., Woody, J. W., Yang, A. & Stroock, A. D. Shape selectivity in the assembly of lithographically designed colloidal particles. J. Am. Chem. Soc. 129, 40–41 (2007).

    Article  CAS  Google Scholar 

  22. Dontula, P., Macosko, C. & Scriven, L. Model elastic liquids with water soluble polymers. AIChE J. 44, 1247–1255 (1998).

    Article  CAS  Google Scholar 

  23. Swenson, J., Smalley, M. V. & Hatharasinghe, H. L. M. Mechanism and strength of polymer bridging flocculation. Phys. Rev. Lett. 81, 5840–5843 (1998).

    Article  CAS  Google Scholar 

  24. Feng, L. et al. Cinnamate-based DNA photolithography. Nature Mater. 12, 747–753 (2013).

    Article  CAS  Google Scholar 

  25. Wu, K. T. et al. Polygamous particles. Proc. Natl Acad. Sci. USA 109, 18731–18736 (2012).

    Article  CAS  Google Scholar 

  26. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid. Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  27. Edmond, K. V. et al. Tracking the Brownian diffusion of a colloidal tetrahedral cluster. Chaos 21, 041103 (2011).

    Article  Google Scholar 

  28. Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006).

    Article  CAS  Google Scholar 

  29. Noro, M. G. & Frenkel, D. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  30. Lin, K-h., Crocker, J. C., Zeri, A. C. & Yodh, A. G. Colloidal interactions in suspensions of rods. Phys. Rev. Lett. 87, 088301 (2001).

    Article  CAS  Google Scholar 

  31. Eckert, T. & Bartsch, E. Re-entrant glass transition in a colloid–polymer mixture with depletion attractions. Phys. Rev. Lett. 89, 125701 (2002).

    Article  CAS  Google Scholar 

  32. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  33. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  34. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  35. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  36. Wang, Y. F. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Grosberg, D. Grier, A. Hollingsworth, G. Hunter, K. Edmond and D. Kraft for fruitful discussions. This work is supported partially by the NSF MRSEC Program under Grant No. DMR-0820341 for materials, and NASA NNX08AK04G for microscopy. L.F., B.L. and P.C. acknowledge support from DOE-BES-DE-SC0007991 for thermal and optical measurements, data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Contributions

L.F. and P.C. initiated the project. L.F., B.L. and S.S. performed the experiments. L.F., B.L. and P.C. developed the theoretical model. All authors analysed the data and wrote the paper.

Corresponding author

Correspondence to Lang Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1389 kb)

Supplementary Information

Supplementary Movie S1 (MP4 10371 kb)

Supplementary Information

Supplementary Movie S2 (MP4 10428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Laderman, B., Sacanna, S. et al. Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nature Mater 14, 61–65 (2015). https://doi.org/10.1038/nmat4109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing