Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Unidirectional light propagation at exceptional points

A Correction to this article was published on 22 May 2013

This article has been updated

Unique opportunities arise from exceptional points that coalesce states of an open system in synthetic photonic media, where delicately balanced complex dielectric functions produce unprecedented optical properties.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A photonic crystal consists of periodically arranged non-absorbing dielectrics with sizes at the scale of the light wavelength.
Figure 2: Unidirectional propagation of light at exceptional points.
Figure 3: The two solutions of a two-channel waveguide with a complex and interacting Hamiltonian coalesce at the exceptional points (orange spheres).

Change history

  • 29 April 2013

    In the version of this Commentary originally published, the volume number in ref. 6 was incorrect; the reference should have read 'Feng, L. et al. Nature Mater. 12, 108–113 (2013)'. This error has been corrected in the HTML and PDF versions.

References

  1. Pendry, J. B., Schurig, D. & Smith, D. R. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  2. Schurig, D. et al. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  3. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. Nature Mater. 8, 568–571 (2009).

    Article  CAS  Google Scholar 

  4. Rüter, C. E. et al. Nature Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  5. Regensburger, A. et al. Nature 488, 167–171 (2012).

    Article  CAS  Google Scholar 

  6. Feng, L. et al. Nature Mater. 12, 108–113 (2013).

    Article  CAS  Google Scholar 

  7. Yablonovitch, E. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  8. John, S. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  9. Strauf, S. et al. Phys. Rev. Lett. 96, 127404 (2006).

    Article  CAS  Google Scholar 

  10. Raman, A. & Fan, S. Phys. Rev. Lett. 104, 087401 (2010).

    Article  Google Scholar 

  11. Musslimani, Z. H., El-Ganainy, R., Makris, K. G. & Christodoulides, D. N. Phys. Rev. Lett. 100, 030402 (2008).

    Article  CAS  Google Scholar 

  12. Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Phys. Rev. Lett. 100, 103904 (2008).

    Article  CAS  Google Scholar 

  13. Mostafazadeh, A. Phys. Rev. Lett. 102, 220402 (2009).

    Article  Google Scholar 

  14. Guo, A. et al. Phys. Rev. Lett. 103, 093902 (2009).

    Article  CAS  Google Scholar 

  15. Bagchia, B. & Quesne, C. Phys. Lett. A 273, 285–292 (2000).

    Article  Google Scholar 

  16. Bender, C. M., Brody, D. C. & Jones, H. F. Phys. Rev. Lett. 89, 270401 (2002).

    Article  Google Scholar 

  17. Bender, C. M. & Boettcher, S. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  CAS  Google Scholar 

  18. Heiss, W. D. J. Phys. A 37, 2455–2464 (2004).

    Article  Google Scholar 

  19. Feng, L. et al. Science 333, 729–733 (2011).

    Article  CAS  Google Scholar 

  20. Fan, S. H. et al. Science 335, 38 (2012).

    CAS  Google Scholar 

  21. Feng, L. et al. Science 335, 38 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231 through the Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Zhang, X. Unidirectional light propagation at exceptional points. Nature Mater 12, 175–177 (2013). https://doi.org/10.1038/nmat3576

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing