Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic nano-oscillator driven by pure spin current

Abstract

With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems1,2,3,4,5,6,7,8,9. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films10,11,12,13,14. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes12,15. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental layout.
Figure 2: BLS characterization of the magnetization dynamics under the influence of spin current.
Figure 3: Spatial mapping of magnetization oscillations induced by the spin current.
Figure 4: Dependence of the auto-oscillation characteristics on the static magnetic field.

Similar content being viewed by others

References

  1. Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  3. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  4. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  5. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).

    Article  CAS  Google Scholar 

  6. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  7. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  8. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  9. Kurebayashi, H. et al. Controlled enhancement of spin-current emission by three-magnon splitting. Nature Mater. 10, 660–664 (2011).

    Article  CAS  Google Scholar 

  10. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  12. Demidov, V. E. et al. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011).

    Article  CAS  Google Scholar 

  13. Wang, Z., Sun, Y., Wu, M., Tiberkevich, V. & Slavin, A. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011).

    Article  Google Scholar 

  14. Demidov, V. E., Urazhdin, S., Edwards, E. R. J. & Demokritov, S. O. Wide-range control of ferromagnetic resonance by spin Hall effect. Appl. Phys. Lett. 99, 172501 (2011).

    Article  Google Scholar 

  15. Suhl, H. The theory of ferromagnetic resonance at high signal powers. J. Phys. Chem. Solids 1, 209–227 (1957).

    Article  Google Scholar 

  16. Demidov, V. E. et al. Nano-optics with spin waves at microwave frequencies. Appl. Phys. Lett. 92, 232503 (2008).

    Article  Google Scholar 

  17. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  18. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  19. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  CAS  Google Scholar 

  20. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  21. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  22. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  CAS  Google Scholar 

  23. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article  Google Scholar 

  24. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    Google Scholar 

  25. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  26. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  CAS  Google Scholar 

  27. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  28. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  29. Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Mag. 44, 6–12 (2008).

    Article  CAS  Google Scholar 

  30. Slonczewski, J. C. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Deutsche Forschungsgemeinschaft, National Science Foundation of the USA, and the DARPA of the USA. We thank R. Schlesiger for the assistance in sample imaging.

Author information

Authors and Affiliations

Authors

Contributions

V.E.D. and H.U. performed measurements and data analysis. S.U. designed and fabricated the samples and performed data analysis. V.T. and A.S. developed the theory. D.B. and G.S. performed the sample characterization. S.O.D. formulated the experimental approach and managed the project. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Vladislav E. Demidov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidov, V., Urazhdin, S., Ulrichs, H. et al. Magnetic nano-oscillator driven by pure spin current. Nature Mater 11, 1028–1031 (2012). https://doi.org/10.1038/nmat3459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing