Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnon-drag thermopile

Abstract

Thermoelectric effects in spintronics1 are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow2,3,4,5,6,7,8,9,10. Thermal magnons (spin-wave quanta) are expected to play a major role2,5,11,12; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons12,13. Here, we demonstrate a conceptually new device that enables us to gather information on magnon–electron scattering and magnon-drag effects. The device resembles a thermopile14 formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron–magnon interactions, magnon dynamics and thermal spin transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnon-drag detection principle and geometry of the device.
Figure 2: Magnon-induced magnetoresistance.
Figure 3: Magnon drag.
Figure 4: Temperature variation of the magnon-drag effect.

Similar content being viewed by others

References

  1. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    Article  CAS  Google Scholar 

  2. McCann, E. & Fal’ko, V. I. Magnetothermopower and magnon-assisted transport in ferromagnetic tunnel junctions. Appl. Phys. Lett. 81, 3609–3611 (2002).

    Article  CAS  Google Scholar 

  3. Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J-Ph. Thermodynamic description of heat and spin transport in magnetic nanostructures. Phys. Rev. B 73, 024419 (2006).

    Article  Google Scholar 

  4. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  5. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  6. Jaworski, C. M. et al. Observation of the spin Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  7. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  8. Yu, H., Granville, S., Yu, D. P. & Ansermet, J-Ph. Evidence for thermal spin-transfer torque. Phys. Rev. Lett. 104, 146601 (2010).

    Article  Google Scholar 

  9. Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling. Nature 475, 82–85 (2011).

    Article  CAS  Google Scholar 

  10. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).

    Article  CAS  Google Scholar 

  11. Avery, A. D., Sultan, R., Bassett, D., Wei, D. & Zink, B. L. Thermopower and resistivity in ferromagnetic thin films near room temperature. Phys. Rev. B 83, 100401(R) (2011).

    Article  Google Scholar 

  12. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  13. Sinova, J. Spin Seebeck effect: Thinks globally but acts locally. Nature Mater. 9, 880–881 (2010).

    Article  CAS  Google Scholar 

  14. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  15. Bailyn, M. Maximum variational principle for conduction problems in a magnetic field, and the theory of magnon drag. Phys. Rev. 126, 2040–2054 (1962).

    Article  Google Scholar 

  16. Grannemann, G. N. & Berger, L. Magnon-drag Peltier effect in a Ni–Cu alloy. Phys. Rev. B 13, 2072–2079 (1976).

    Article  CAS  Google Scholar 

  17. Blatt, A. D., Flood, D. J., Rowe, V. & Schroeder, P. A. Magnon-drag thermopower in iron. Phys. Rev. Lett. 18, 395–396 (1967).

    Article  CAS  Google Scholar 

  18. Raquet, B., Viret, M., Sondergard, E., Cespedes, O. & Mamy, R. Electron–magnon scattering and magnetic resistivity in 3d ferromagnets. Phys. Rev. B 66, 024433 (2002).

    Article  Google Scholar 

  19. Mihai, A. P., Attané, J. P., Marty, A., Warin, P. & Samson, Y. Electron–magnon diffusion and magnetization reversal detection in FePt thin films. Phys. Rev. B 77, 060401(R) (2008).

    Article  Google Scholar 

  20. Hinzke, D. & Nowak, U. Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011).

    Article  CAS  Google Scholar 

  21. Gurevich, A. G. & Melkov, G. A. Magnetic Oscillations and Waves (CRC Press, 1996).

    Google Scholar 

  22. Valenzuela, S. O. & Tinkham, M. Spin current induced Hall effect. J. Appl. Phys. 101, 09B103 (2007).

    Article  Google Scholar 

  23. Valenzuela, S. O. Nonlocal electronic spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B 23, 2413–2438 (2009).

    Article  CAS  Google Scholar 

  24. Costache, M. V. & Valenzuela, S. O. Experimental spin ratchet. Science 330, 1645–1648 (2010).

    Article  CAS  Google Scholar 

  25. Costache, M. V., Sladkov, M., van der Wal, C. H. & van Wees, B. J. On-chip detection of ferromagnetic resonance of a single submicron Permalloy strip. Appl. Phys. Lett. 89, 192506 (2006).

    Article  Google Scholar 

  26. Small, J. P., Perez, K. M. & Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett 91, 256801 (2003).

    Article  Google Scholar 

  27. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  CAS  Google Scholar 

  28. Ziman, J. M. Electrons and Phonons (Oxford Univ., 1960).

    Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with I. M. Miron and J. Van de Vondel. We thank S. Alvarado, A. Bachtold, O. Fesenko and P. Gambardella for a critical reading of the manuscript. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.

Author information

Authors and Affiliations

Authors

Contributions

M.V.C. and S.O.V. planned the measurements, analysed the data and wrote the paper. M.V.C. fabricated the samples and made the measurements. I.N. contributed to the sample design and data analysis. G.B. provided sample fabrication and data-analysis support. S.O.V. supervised the experiment. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Marius V. Costache or Sergio O. Valenzuela.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costache, M., Bridoux, G., Neumann, I. et al. Magnon-drag thermopile. Nature Mater 11, 199–202 (2012). https://doi.org/10.1038/nmat3201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing