Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen

A Corrigendum to this article was published on 23 November 2011

This article has been updated

Abstract

Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection–absorption spectroscopy and first-principles modelling. CO molecules, selectively adsorbed on catalytically active sites, form a complex with activated hydrogen that is removed at remarkably low temperatures (115 K; possibly as a molecule). These results provide the first direct evidence that Ti-doped Al can carry out the essential first step of molecular hydrogen activation under nearly barrierless conditions, thereby challenging the monopoly of noble metals in hydrogen activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infrared reflection–absorption spectra of CO molecules adsorbed on Al(111) surfaces at 90 K.
Figure 2: Ti surface configurations relevant for hydrogen dissociation.
Figure 3: Catalytic activity as a function of Ti coverage.
Figure 4: Evidence for hydrogen spillover from catalytic site onto bare Al.
Figure 5: Catalytic activity of Ti-doped Al(111) surface.
Figure 6: Evolution of CO–H complex (2,222 cm−1 band) on a 0.1 ML Ti-doped Al(111) surface.

Similar content being viewed by others

Change history

  • 21 October 2011

    In the version of this Article originally published, the first sentence of the Acknowledgements should have read that the work performed at the University of Texas at Dallas was fully supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract no. DE-AC02-98CH10886. This error has been corrected in the HTML and PDF versions of the Article.

References

  1. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  2. Goodman, D. W., Kelley, R. D., Madey, T. E. & Yates, J. T. Kinetics of the hydrogenation of CO over a single-crystal nickel-catalyst. J. Catalys. 63, 226–234 (1980).

    Article  CAS  Google Scholar 

  3. Eigen, N., Keller, C., Dornheim, M., Klassen, T. & Bormann, R. Industrial production of light metal hydrides for hydrogen storage. Scr. Mater. 56, 847–851 (2007).

    Article  CAS  Google Scholar 

  4. Eberle, U., Felderhoff, M. & Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009).

    Article  CAS  Google Scholar 

  5. Soler, L., Macanás, J., Muñoz, M. & Casado, J. Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions. Int. J. Hydrog. Energy 32, 4702–4710 (2007).

    Article  CAS  Google Scholar 

  6. van Vliet, M. C. A., Mandelli, D., Arends, I. W. C. E., Schuchardt, U. & Sheldon, R. A. Alumina: A cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chem. 3, 243–246 (2001).

    Article  CAS  Google Scholar 

  7. Chaudhuri, S. & Muckerman, J. T. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: A critical first step for reversible hydrogen storage in NaAlH4 . J. Phys. Chem. B 109, 6952–6957 (2005).

    Article  CAS  Google Scholar 

  8. Chaudhuri, S., Graetz, J., Ignatov, A., Reilly, J. J. & Muckerman, J. T. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: A combined experimental and density functional theoretical approach. J. Am. Chem. Soc. 128, 11404–11415 (2006).

    Article  CAS  Google Scholar 

  9. Paul, J. Hydrogen adsorption on Al(100). Phys. Rev. B 37, 6164–6174 (1988).

    Article  CAS  Google Scholar 

  10. Chaudhuri, S., Rangan, S., Veyan, J. F., Muckerman, J. T. & Chabal, Y. J. Formation and bonding of alane clusters on Al(111) surfaces studied by infrared absorption spectroscopy and theoretical modeling. J. Am. Chem. Soc. 130, 10576–10587 (2008).

    Article  CAS  Google Scholar 

  11. Davydov, A. A. IR Spectroscopy Applied to Surface Chemistry of Oxides (Nauka, 1984).

    Google Scholar 

  12. Vijayanand, P., Chakarova, K., Hadjiivanov, K., Lukinskas, P. & Knozinger, H. On the nature of Pd+ surface carbonyl and nitrosyl complexes formed on Pd-promoted tungstated zirconia catalyst. Phys. Chem. Chem. Phys. 5, 4040–4044 (2003).

    Article  CAS  Google Scholar 

  13. Hadjiivanov, K. I., Kantcheva, M. M. & Klissurski, D. G. IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: Sigma and pi components of the Cu+–CO bond. J. Chem. Soc. Faraday Trans. 92, 4595–4600 (1996).

    Article  CAS  Google Scholar 

  14. Ghiotti, G., Boccuzzi, F. & Chiorino, A. in Studies in Surface Science and Catalysis Vol. 21 (eds Che, M. & Bond, G. C.) 235–246 (Elsevier, 1985).

    Google Scholar 

  15. Boccuzzi, F., Ghiotti, G. & Chiorino, A. CO adsorption on small particles of Cu dispersed on microcrystalline ZnO. Surf. Sci. 156, 933–942 (1985).

    Article  CAS  Google Scholar 

  16. Bobrov, N. N., Davydov, A. A., Maksimov, N. G., Ione, K. G. & Anufrienko, V. F. Peculiarities of the interaction of CO with copper cations in zeolites according to the data of the ESR and IR spectra. Russ. Chem. Bull. 24, 672–676 (1975).

    Article  Google Scholar 

  17. Lokhov, Y. A. & Davydov, A. A. Study of the state of transition metal cations on the surface of catalysts by IR spectroscopy of adsorbed test molecules (CO,NO). 2. Reduced sites on the surface of copper containing catalysts. Kinet. Katal. 20, 1498–1505 (1979).

    CAS  Google Scholar 

  18. Todorova, S. Z. & Kadinov, G. B. Infrared spectroscopy study of adsorption and coadsorption of carbon monoxide and hydrogen on Ru/Al2O3 . Res. Chem. Intermediates 28, 291–301 (2002).

    Article  CAS  Google Scholar 

  19. Sehested, J., Dahl, S., Jacobsen, J. & Rostrup-Nielsen, J. R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios. J. Phys. Chem. B 109, 2432–2438 (2004).

    Article  Google Scholar 

  20. Ojeda, M. et al. Kinetically relevant steps and H2/D2 isotope effects in Fischer–Tropsch synthesis on Fe and Co catalysts. J. Phys. Chem. C 114, 19761–19770 (2010).

    Article  CAS  Google Scholar 

  21. Neurock, M. First-principles analysis of the hydrogenation of carbon monoxide over palladium. Top. Catalys. 9, 135–152 (1999).

    Article  CAS  Google Scholar 

  22. Jacquemin, M., Beuls, A. & Ruiz, P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catal. Today 157, 462–466 (2010).

    Article  CAS  Google Scholar 

  23. Hahn, C., Shan, J., Groot, I. M. N., Kleyn, A. W. & Juurlink, L. B. F. Selective poisoning of active sites for D2 dissociation on platinum. Catal. Today 154, 85–91 (2010).

    Article  CAS  Google Scholar 

  24. Gilbert, R. E., Mount, C. K., Melendez, O. & Hoflund, G. B. Investigation of CO and H2 adsorption on polycrystalline Pt. J. Phys. Condens. Matter 5, A213–A216 (1993).

    Article  Google Scholar 

  25. Brown, J. K., Luntz, A. C. & Schultz, P. A. Long-range poisoning of D2 dissociative chemisorption on Pt(111) by coadsorbed K. J. Chem. Phys. 95, 3767–3774 (1991).

    Article  CAS  Google Scholar 

  26. Blackmond, D. G. & Ko, E. I. Structural sensitivity of CO adsorption and H2/CO coadsorption on Ni/SiO2 catalysts. J. Catalys. 96, 210–221 (1985).

    Article  CAS  Google Scholar 

  27. Andersson, M. P. et al. Structure sensitivity of the methanation reaction: H2 induced CO dissociation on nickel surfaces. J. Catalys. 255, 6–19 (2008).

    Article  CAS  Google Scholar 

  28. Ryberg, R. Adsorption of molecules on free-electron-like metals: CO on Al(100). Phys. Rev. B 37, 2488 (1988).

    Article  CAS  Google Scholar 

  29. Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  30. Persson, B. N. J. & Ryberg, R. Vibrational interaction between molecules adsorbed on a metal-surface—the dipole–dipole interaction. Phys. Rev. B 24, 6954–6970 (1981).

    Article  CAS  Google Scholar 

  31. Hammer, B., Hansen, L. B. & Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  32. Diemant, T., Rauscher, H., Bansmann, J. & Behm, R. J. Coadsorption of hydrogen and CO on well-defined Pt35Ru65/Ru(0001) surface alloys—site specificity vs. adsorbate–adsorbate interactions. Phys. Chem. Chem. Phys. 12, 9801–9810 (2010).

    Article  CAS  Google Scholar 

  33. Gilbert, R. E., Mount, C. K., Melendez, O. & Hoflund, G. B. Investigation of CO and H2 adsorption on polycrystalline Pt. J. Phys. Condens. Matter 5, A213–A216 (1993).

    Article  Google Scholar 

  34. Jansen, M. M. M., Gracia, J., Nieuwenhuys, B. E. & Niemantsverdriet, J. W. Interactions between co-adsorbed CO and H on a Rh(100) single crystal surface. Phys. Chem. Chem. Phys. 11, 10009–10016 (2009).

    Article  CAS  Google Scholar 

  35. Neurock, M. First-principles analysis of the hydrogenation of carbon monoxide over palladium. Top. Catalys. 9, 135–152 (1999).

    Article  CAS  Google Scholar 

  36. Panagiotopoulou, P., Kondarides, D. I. & Verykios, X. E. Selective methanation of CO over supported Ru catalysts. Appl. Catalys. B: Environ. 88, 470–478 (2009).

    Article  CAS  Google Scholar 

  37. Riedmüller, B., Papageorgopoulos, D. C., Berenbak, B., van Santen, R. A. & Kleyn, A. W. ‘Magic’ island formation of CO coadsorbed with H on Ru(0 0 0 1). Surf. Sci. 515, 323–336 (2002).

    Article  Google Scholar 

  38. Chopra, I. S., Chaudhuri, S., Veyan, J. F., Graetz, J. & Chabal, Y. J. Effect of titanium doping of Al(111) surfaces on alane formation, mobility, and desorption. J. Phys. Chem. C 115, 16701–16710 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work performed at the University of Texas at Dallas was fully supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract no. DE-AC02-98CH10886. The theoretical work carried out at Washington State University was supported by the Office of Naval Research (grants N00014-04-1-0688 and N00014-06-1-0315).

Author information

Authors and Affiliations

Authors

Contributions

I.S.C. carried out all the experiments, with technical support from J.F.V. for apparatus design and modification. S.C. carried out all the calculations and Y.J.C. supervised the experimental work. S.C., Y.J.C. and I.S.C. contributed equally to the manuscript.

Corresponding author

Correspondence to Yves J. Chabal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, I., Chaudhuri, S., Veyan, J. et al. Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nature Mater 10, 884–889 (2011). https://doi.org/10.1038/nmat3123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing