Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical-like behaviour of glass-forming liquids

Abstract

Recently it has been revealed that when approaching the glass-transition temperature, Tg, the dynamics of a liquid not only drastically slows down, but also becomes progressively more heterogeneous. From our simulations and experiments of six different glass-forming liquids, we find that the heterogeneous dynamics is a result of critical-like fluctuations of static structural order, contrary to a common belief that it is purely of dynamic origin. The static correlation length and susceptibility of a structural order parameter show Ising-like power-law divergence towards the ideal glass-transition point. However, this structural ordering accompanies little density change, which explains why it has not been detected by the static structure factor so far. Our results suggest a far more direct link than thought before between glass transition and critical phenomena. Indeed, the glass transition may be a new type of critical phenomenon where a structural order parameter is directly linked to slowness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural order in glass-forming liquids.
Figure 2: Geometrical tiling patterns of 2DPC (Δ2DPC=9% and φ=0.73) and its φ dependence.
Figure 3: Spatial correlations of density and bond-orientational order.
Figure 4: The growth of medium-range crystalline order and its relation to the slow dynamics.
Figure 5: Finite-size scaling analysis of the criticality for 2DPC and 3DPC.
Figure 6: Critical-like behaviour of dynamics correlation in 2DPC (Δ2DPC=9%) and 3DPC (Δ3DPC=6%).

Similar content being viewed by others

References

  1. Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  2. Chaikin, P. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  3. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  4. Sillescu, H. Heterogeneity at the glass transition: A review. J. Non-Cryst. Solids 243, 81–108 (1999).

    Article  CAS  Google Scholar 

  5. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  CAS  Google Scholar 

  6. Debenedetti, P. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  7. Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

    Article  CAS  Google Scholar 

  8. Perera, D. & Harrowell, P. Stability and structure of a supercooled liquid mixture in two dimensions. Phys. Rev. E 59, 5721–5743 (1999).

    Article  CAS  Google Scholar 

  9. Hurley, M. & Harrowell, P. Non-Gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105, 10521–10526 (1996).

    CAS  Google Scholar 

  10. Kegel, W. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  CAS  Google Scholar 

  11. Weeks, E., Crocker, J., Levitt, A., Schofield, A. & Weitz, D. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  12. Kob, W., Donati, C., Plimpton, S., Poole, P. & Glotzer, S. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article  CAS  Google Scholar 

  13. Yamamoto, R. & Onuki, A. Kinetic heterogeneities in a highly supercooled liquid. J. Phys. Soc. Jpn 66, 2545–2548 (1997).

    Article  CAS  Google Scholar 

  14. Lačević, N., Starr, F., Schroder, T. & Glotzer, S. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).

    Article  Google Scholar 

  15. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005).

    Article  CAS  Google Scholar 

  16. Adam, G. & Gibbs, J. On the temperature dependence of cooperative relaxation properties in glass-forming liquid. J. Chem. Phys. 43, 139–146 (1965).

    Article  CAS  Google Scholar 

  17. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 111, 1045–1054 (1989).

    Article  Google Scholar 

  18. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. USA 97, 2990–2994 (2000).

    Article  CAS  Google Scholar 

  19. Biroli, G., Bouchaud, J. P., Cavagna, A., Grigera, T. S. & Verrochio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys. 4, 771–775 (2008).

    Article  CAS  Google Scholar 

  20. Sethna, J. P., Shore, J. D. & Huang, M. Scaling theory for the glass transition. Phys. Rev. B 44, 4943–4959 (1991).

    Article  CAS  Google Scholar 

  21. Toninelli, C., Wyart, M., Berthier, L., Biroli, G. & Bouchaud, J.-P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 71, 041505 (2005).

    Article  Google Scholar 

  22. Garrahan, J. P. & Chandler, D. Coarse-grained microscopic model of glass formers. Proc. Natl Acad. Sci. USA 100, 9710–9714 (2003).

    Article  CAS  Google Scholar 

  23. Hedges, L. O., Jack, R. L., Garrahan, J. P. & Chandler, D. Dynamic order–disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009).

    Article  CAS  Google Scholar 

  24. Tarjus, G., Kivelson, S. A., Nussinov, Z. & Viod, P. The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment. J. Phys. Condens. Matter 17, R1143–R1182 (2005).

    Article  CAS  Google Scholar 

  25. Tanaka, H. Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit. J. Chem. Phys. 111, 3163–3174 (1999).

    Article  CAS  Google Scholar 

  26. Tanaka, H. Two-order-parameter model of the liquid-glass transition. II. Structural relaxation and dynamic heterogeneity. J. Non-Cryst. Solids 351, 3385–3395 (2005).

    Article  CAS  Google Scholar 

  27. Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).

    Article  Google Scholar 

  28. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  Google Scholar 

  29. Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nature Phys. 4, 711–715 (2008).

    Article  CAS  Google Scholar 

  30. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).

    Article  CAS  Google Scholar 

  31. Kawasaki, T., Araki, T. & Tanaka, H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett. 99, 215701 (2007).

    Article  Google Scholar 

  32. Watanabe, K. & Tanaka, H. Direct observation of medium-range crystalline order in granular liquids near the glass transition. Phys. Rev. Lett. 100, 158002 (2008).

    Article  Google Scholar 

  33. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and gases. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  34. Berthier, L. & Tarjus, G. Nonperturbative effect of attractive forces in viscous liquids. Phys. Rev. Lett. 103, 170601 (2009).

    Article  Google Scholar 

  35. Glaser, M. A. & Clark, N. A. Melting and liquid structure in two dimensions. Adv. Chem. Phys. 83, 543–709 (1993).

    CAS  Google Scholar 

  36. Conrad, J. C., Starr, F. W. & Weitz, D. A. Weak correlations between local density and dynamics near the glass transition. J. Phys. Chem. B 109, 21235–21240 (2005).

    Article  CAS  Google Scholar 

  37. Widmer-Cooper, A. & Harrowell, P. Free volume cannot explain the spatial heterogeneity of Debye–Waller factors in a glass-forming binary alloy. J. Non-Cryst. Solids 352, 5098–5102 (2006).

    Article  CAS  Google Scholar 

  38. Ebert, F., Keim, P. & Maret, G. Local crystalline order in a 2D colloidal glass former. Eur. Phys. J. E 28, 161–168 (2008).

    Article  Google Scholar 

  39. Angell, C., Ngai, K., McKenna, G., McMillan, P. & Martin, S. Relaxation in glass forming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  CAS  Google Scholar 

  40. Mittal, J., Errington, J. R. & Truskett, T. M. Quantitative link between single-particle dynamics and static structure of supercooled liquids. J. Phys. Chem. B 110, 18147–18150 (2006).

    Article  CAS  Google Scholar 

  41. Ray, P. & Binder, K. Finite-size effect in the dynamics near the glass transition. Europhys. Lett. 27, 53–58 (1994).

    Article  CAS  Google Scholar 

  42. Karmakara, S., Dasgupta, C. & Sastry, S. Growing length and time scales in glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 3675–3679 (2009).

    Article  Google Scholar 

  43. Auer, S. & Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413, 711–713 (2001).

    Article  CAS  Google Scholar 

  44. Aharonov, E. et al. Direct identification of the glass transition: Growing length scale and the onset of plasticity. Europhys. Lett. 77, 56002 (2007).

    Article  Google Scholar 

  45. Chandra, P., Coleman, P. & Larkin, A. I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    Article  CAS  Google Scholar 

  46. Weber, C. et al. Ising transition driven by frustration in a 2D classical model with continuous symmetry. Phys. Rev. Lett. 91, 177202 (2003).

    Article  Google Scholar 

  47. Torquato, S., Truskett, T. M. & Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064–2067 (2000).

    Article  CAS  Google Scholar 

  48. Fisher, D. S. Activated dynamic scaling in disordered systems. J. Appl. Phys. 61, 3672–3677 (1987).

    Article  Google Scholar 

  49. Mezard, M. & Parisi, G. Statistical physics of structural glasses. J. Phys. Condens. Matter 12, 6655–6673 (2000).

    Article  CAS  Google Scholar 

  50. Bouchaud, J. P., Cugliandro, L. F., Kurchan, J. & Mezard, M. in Spin Glasses and Random Fields (ed. Young, A. P.) (World Science, 1997).

    Google Scholar 

  51. Tarzia, M. & Moore, M. A. Glass phenomenology from the connection to spin glasses. Phys. Rev. E 75, 031502 (2007).

    Article  CAS  Google Scholar 

  52. Hecksher, T., Nielsen, A. I., Olsen, N. B. & Dyre, J. C. Little evidence for dynamic divergences in ultraviscous molecular liquids. Nature Phys. 4, 673–673 (2008).

    Article  Google Scholar 

  53. Elmatad, Y. S., Chandler, D. & Garrahan, J. P. Corresponding states of structural glass formers. J. Phys. Chem. B 113, 5563–5567 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Furukawa for valuable discussion and C. Paddy Royall for a critical reading of the manuscript. This work was partially supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived and supervised the project, T.K. carried out simulations of 2DPC, 2DBL, 3DPC and 3DLJ, H.S. carried out simulations of 2DSL, K.W. carried out experiments of 2DGL, H.T. and T.K. analysed the data and H.T. wrote the manuscript.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3915 kb)

Supplementary Movie 1

Supplementary Movie 1 (MPG 4201 kb)

Supplementary Movie 2

Supplementary Movie 2 (MPG 9009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H., Kawasaki, T., Shintani, H. et al. Critical-like behaviour of glass-forming liquids. Nature Mater 9, 324–331 (2010). https://doi.org/10.1038/nmat2634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing