Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7

Abstract

Charge carriers in low-doped semiconductors may distort the atomic lattice around them and through this interaction form so-called small polarons1,2. High carrier concentrations on the other hand can lead to short-range ordered polarons (large polarons)3,4 and even to a long-range charge and orbital order5. These ordered systems should be insulating with a large electrical resistivity6. However, recently a polaronic pseudogap was found in a metallic phase of La2−2xSr1+2xMn2O7 (ref. 7). This layered manganite is famous for colossal magnetoresistance associated with a phase transition from this low-temperature metallic phase to a high-temperature insulating phase7,8,9. Broad charge-order peaks due to large polarons in the insulating phase disappear when La2−2xSr1+2xMn2O7 becomes metallic10. Investigating how polaronic features survive in the metallic phase, here we report the results of inelastic neutron scattering measurements showing that inside the metallic phase polarons remain as fluctuations that strongly broaden and soften certain phonons near the wavevectors where the charge-order peaks appeared in the insulating phase. Our findings imply that polaronic signatures in metals may generally come from a competing insulating charge-ordered phase. Our findings are highly relevant to cuprate superconductors with both a pseudogap11,12 and a similar phonon effect associated with a competing stripe order13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correspondence between CE order and phonon vibration patterns.
Figure 2: Representative constant-Q scans for transverse and longitudinal phonons dispersing in the (1, 1, 0) direction.
Figure 3: Dispersions and linewidths of transverse and longitudinal bond-stretching phonons in the (1, 1, 0) direction of La1.2Sr1.8Mn2O7.
Figure 4: Background-subtracted phonon spectra at Q=(2.75,3.25,0).

Similar content being viewed by others

References

  1. Holstein, T. Studies of polaron motion. Part II. The small polaron. Ann. Phys. 8, 343–389 (1959).

    Article  CAS  Google Scholar 

  2. Emin, D. Existence of free and self trapped carriers in insulators. Adv. Phys. 22, 57–116 (1973).

    Article  Google Scholar 

  3. Adams, C. P., Lynn, J. W., Mukovskii, Y. M., Arsenov, A. A. & Shulyatev, D. A. Charge ordering and polaron formation in the magnetoresistive oxide La0.7Ca0.3MnO3 . Phys. Rev. Lett. 85, 3954–3957 (2000).

    Article  CAS  Google Scholar 

  4. Dai, P. et al. Short-range polaron correlations in the ferromagnetic La1−xCaxMnO3 . Phys. Rev. Lett. 85, 2553–2556 (2000).

    Article  CAS  Google Scholar 

  5. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  6. Millis, A., Littlewood, P. & Shraiman, B. Double exchange alone does not explain the resistivity of La1−xSrxMnO3 . Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  CAS  Google Scholar 

  7. Manella, N. et al. Nodal quasiparticles in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).

    Article  Google Scholar 

  8. Dessau, D. S. et al. k-dependent electronic structure, a large ‘ghost’ Fermi surface, and a pseudogap in a layered magnetoresistive oxide. Phys. Rev. Lett. 81, 192–195 (1998).

    Article  CAS  Google Scholar 

  9. Chuang, Y.-D. et al. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides. Science 292, 1509–1513 (2001).

    Article  CAS  Google Scholar 

  10. Argyriou, D. N. et al. Glass transition in the polaron dynamics of colossal magnetoresisitive manganites. Phys. Rev. Lett. 89, 036401 (2002).

    Article  CAS  Google Scholar 

  11. King, D. M. et al. Electronic structure evolution from Mott insulator to superconductor—an angle-resolved photoemission investigation. J. Phys. Chem. Solids 56, 1865–1869 (1995).

    Article  CAS  Google Scholar 

  12. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  13. Reznik, D. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006).

    Article  CAS  Google Scholar 

  14. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites La1−xM(II)xMnO3 . Phys. Rev. 100, 564–573 (1955).

    Article  CAS  Google Scholar 

  15. Wollan, E. O. & Koehler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds La1−xCaxMnO3 . Phys. Rev. 100, 545–563 (1955).

    Article  CAS  Google Scholar 

  16. Radaelli, P. G., Cox, D. E., Marezio, M. & Cheong, S. Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3 . Phys. Rev. B 55, 3015–3023 (1997).

    Article  CAS  Google Scholar 

  17. Li, J. Q., Matsui, Y., Kimura, T. & Tokura, Y. Structural properties and charge-ordering transition in LaSr2Mn2O7 . Phys. Rev. B 57, R3205–R3208 (1998).

    Article  CAS  Google Scholar 

  18. Argyriou, D. N. et al. Charge ordering and phase competition in the layered perovskite LaSr2Mn2O7 . Phys. Rev. B 61, 15269–15276 (2000).

    Article  CAS  Google Scholar 

  19. Li, Q. et al. Reentrant orbital order and the true ground state of LaSr2Mn2O7 . Phys. Rev. Lett. 98, 167201 (2007).

    Article  Google Scholar 

  20. Sun, Z. et al. A local metallic state in globally insulating La1.24Sr1.76Mn2O7 well above the metal–insulator transition. Nature Phys. 3, 248–252 (2007).

    Article  CAS  Google Scholar 

  21. Vasiliu-Doloc, L. et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7 . Phys. Rev. Lett. 83, 4393–4396 (1999).

    Article  CAS  Google Scholar 

  22. Rosch, O. & Gunnarsson, O. Dispersion of incoherent spectral features in systems with strong electron–phonon coupling. Eur. Phys. J. B 43, 11–18 (2005).

    Article  Google Scholar 

  23. Mishchenko, A. S. & Nagaosa, N. Electron–phonon coupling and a polaron in the t–J model: From the weak to the strong coupling regime. Phys. Rev. Lett. 93, 036402 (2004).

    Article  CAS  Google Scholar 

  24. Reichardt, W. & Braden, M. Anomalous features in the bond stretching vibrations of La1−xSrxMnO3 . Physica B 263–264, 416–420 (1999).

    Article  Google Scholar 

  25. Reznik, D. & Reichardt, W. Bond-bending and bond-stretching phonons in ferromagnetic La1−xSrxMnO3 . Phys. Rev. B 71, 092301 (2005).

    Article  Google Scholar 

  26. Zhang, J. et al. Jahn–Teller phonon anomaly and dynamic phase fluctuations in La0.7Ca0.3MnO3 . Phys. Rev. Lett. 86, 3823–3826 (2001).

    Article  CAS  Google Scholar 

  27. Reznik, D. & Reichardt, W. Phonon mechanism of the ferromagnetic transition in La1−xSrxMnO3. Preprint at <http://arxiv.org/abs/cond-mat/0312368> (2003).

  28. Pintschovius, L., Reznik, D. & Yamada, K. Oxygen phonon branches in overdoped La1.7Sr0.3CuO4 . Phys. Rev. B 74, 174514 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Braden and L. Pintschovius for helpful discussions and suggestions, and M. Braden and W. Reichardt for allowing us to use shell model parameters for La2−2xSr1+2xMn2O7 that they found in a separate investigation. D.N.A. and D.R. thank Dan Dessau and Jan Zaanen for discussions. Work at Argonne National Laboratory was supported under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a US Department of Energy Office of Science Laboratory. N.A, was supported in part by the Hytrain Project of the Marie Curie Research Training Network funded under the EC’s 6th Framework Human Resources and Mobility Program.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and D.N.A. conceived and oversaw the project. H.Z. and J.F.M. grew the single-crystal sample. The first measurements were carried out by F.W., N.A., D.N.A. and D.R. F.W. and D.R. carried out many further measurements. F.W. carried out the data analysis and lattice dynamics calculations. D.R. and D.N.A. wrote the manuscript with revisions from F.W. F.W. and D.R. prepared figures and Supplementary Information.

Corresponding authors

Correspondence to D. N. Argyriou or D. Reznik.

Supplementary information

Supplementary Information

Supplementary Information (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, F., Aliouane, N., Zheng, H. et al. Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7. Nature Mater 8, 798–802 (2009). https://doi.org/10.1038/nmat2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing