Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface-induced crystallization in supercooled tetrahedral liquids

Abstract

Surfaces have long been known to have an intricate role in solid–liquid phase transformations. Whereas melting is often observed to originate at surfaces, freezing usually starts in the bulk, and only a few systems have been reported to exhibit signatures of surface-induced crystallization1. These include assembly of chain-like molecules2, some liquid metals and alloys3,4,5 and silicate glasses6,7. Here, we report direct computational evidence of surface-induced nucleation in supercooled liquid silicon and germanium, and we illustrate the crucial role of free surfaces in the freezing process of tetrahedral liquids exhibiting a negative slope of their melting lines (dT/dP|coexist<0). Our molecular dynamics simulations show that the presence of free surfaces may enhance the nucleation rates by several orders of magnitude with respect to those found in the bulk. Our findings provide insight, at the atomistic level, into the nucleation mechanism of widely used semiconductors, and support the hypothesis of surface-induced crystallization in other tetrahedrally coordinated systems, in particular water in the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computed nucleation rates in liquid Si and Ge.
Figure 2: Growth of Si crystallites at 0.95 Tm.
Figure 3: Densities of liquid and diamond cubic silicon modelled by the Tersoff potential as functions of temperature near the melting point Tm.
Figure 4: Effect of p on the homogeneous nucleation rate in the bulk liquid at 0.95 Tm.

Similar content being viewed by others

References

  1. van der Veen, J. Melting and freezing at surfaces. Surf. Sci. 433, 1–11 (1999).

    Article  Google Scholar 

  2. Lang, P. Surface induced ordering effects in soft condensed matter systems. J. Phys. Condens. Matter 16, 699–720 (2004).

    Article  Google Scholar 

  3. Regan, M. et al. Surface layering in liquid gallium: An X-ray reflectivity study. Phys. Rev. Lett. 75, 2498–2501 (1995).

    Article  CAS  Google Scholar 

  4. Shpyrko, O. et al. Surface crystallization in a liquid AuSi alloy. Science 313, 77–80 (2006).

    Article  CAS  Google Scholar 

  5. Sutter, P. & Sutter, E. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater. 6, 363–366 (2007).

    Article  CAS  Google Scholar 

  6. Zanotto, E. & Fokin, V. Recent studies of internal and surface nucleation in silicate glasses. Phil. Trans. Math. Phys. Eng. Sci. 361, 591–613 (2003).

    Article  CAS  Google Scholar 

  7. Schmelzer, J., Pascova, R., Moller, J. & Gutzow, I. Surface-induced devitrification of glasses: The influence of elastic strains. J. Non-Cryst. Solids 162, 26–39 (1993).

    Article  CAS  Google Scholar 

  8. Tabazadeh, A., Djikaev, Y. & Reiss, H. Surface crystallization of supercooled water in clouds. Proc. Natl Acad. Sci. USA 99, 15873–15878 (2002).

    Article  CAS  Google Scholar 

  9. Shaw, R., Durant, A. & Mi, Y. Heterogenous surface crystallization observed in undercooled water. J. Phys. Chem. B 109, 9865–9868 (2005).

    Article  CAS  Google Scholar 

  10. Sastry, S. Water: Ins and outs of ice nucleation. Nature 438, 746–747 (2005).

    Article  CAS  Google Scholar 

  11. Kim, B. et al. Kinetics of individual nucleation events observed in nanoscale vapour–liquid–solid growth. Science 322, 1070–1073 (2008).

    Article  CAS  Google Scholar 

  12. Moroni, D., ten Wolde, P. & Bolhuis, P. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).

    Article  Google Scholar 

  13. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article  CAS  Google Scholar 

  14. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    Article  CAS  Google Scholar 

  15. Pluis, B., Frenkel, D. & van der Veen, J. Surface-induced melting and freezing II. A semiempirical Laudau-type model. Surf. Sci. 239, 282–300 (1990).

    Article  CAS  Google Scholar 

  16. Djikaev, Y., Tabazadeh, A., Hamill, P. & Reiss, H. Thermodynamic conditions for the surface-stimulated crystallization of atmospheric droplets. J. Phys. Chem. A 106, 10247–10253 (2002).

    Article  CAS  Google Scholar 

  17. Rice, S. Research overview: The liquid–vapour interface of a metal as a vehicle for studying the atomic, electronic, and optical properties of an inhomogeneous liquid. Proc. Natl Acad. Sci. USA 84, 4709–4716 (1987).

    Article  CAS  Google Scholar 

  18. Halka, V., Streitel, R. & Freyland, W. Is surface crystallization in liquid eutectic AuSi surface-induced? J. Phys. Condens. Matter 20, 355007 (2008).

    Article  Google Scholar 

  19. Allen, R., Frenkel, D. & ten Wolde, P. R. Simulating rare events in equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 124, 024102 (2006).

    Article  Google Scholar 

  20. Allen, R., Frenkel, D. & ten Wolde, P. R. Forward flux sampling-type schemes for simulating rare events: Efficiency analysis. J. Chem. Phys. 124, 194111 (2006).

    Article  Google Scholar 

  21. Voter, A. Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, R13985 (1998).

    Article  CAS  Google Scholar 

  22. Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989).

    Article  CAS  Google Scholar 

  23. Stillinger, F. & Weber, T. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    Article  CAS  Google Scholar 

  24. Ghiringhelli, L., Valeriani, C., Meijer, E. & Frenkel, D. Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007).

    Article  CAS  Google Scholar 

  25. Devaud, G. & Turnbull, D. Undercooling of molten silicon. Appl. Phys. Lett. 46, 844–845 (1985).

    Article  CAS  Google Scholar 

  26. Lee, B., Kuranaga, T., Munetoh, S. & Motooka, T. Surface nucleation of the (111) plane of excimer laser annealed Si on SiO2 substrates: A molecular dynamics study. J. Appl. Phys. 101, 054316 (2007).

    Article  Google Scholar 

  27. Tang, Y., Wang, J. & Zeng, X. Molecular simulations of solid–liquid interfacial tension of silicon. J. Chem. Phys. 124, 236103 (2006).

    Article  Google Scholar 

  28. Kelton, K. in Solid State Physics-Advances in Research and Applications Vol. 45 (eds Ehrenreich, H. & Turnbull, D.) 75–178 (Academic, 1991).

    Google Scholar 

  29. Bhat, M. et al. Vitrification of a monotomic metallic liquid. Nature 448, 787–790 (2007).

    Article  CAS  Google Scholar 

  30. Molinero, V., Sastry, S. & Angell, C. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Phys. Rev. Lett. 97, 075701 (2006).

    Article  Google Scholar 

  31. van Meel, J., Page, A., Sear, R. & Frenkel, D. Two-step vapour-crystal nucleation close below triple point. J. Chem. Phys. 129, 204505 (2008).

    Article  CAS  Google Scholar 

  32. Stankus, S., Khairulin, R. & Tyagelskii, P. The thermal properties of germanium and silicon in condensed state. High Temp. 37, 529–534 (1999).

    CAS  Google Scholar 

  33. Morishita, T. How does tetrahedral structure grow in liquid silicon upon supercooling? Phys. Rev. Lett. 97, 165502 (2006).

    Article  Google Scholar 

  34. Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943).

    Google Scholar 

Download references

Acknowledgements

We gratefully thank D. C. Chrzan, A. F. Voter and M. Parrinello for fruitful discussions. This work was supported by DOE/BES (contract number DE-FG02-06ER46262).

Author information

Authors and Affiliations

Authors

Contributions

T.L., D.D. and G.G. designed the research, interpreted results and wrote the paper; T.L. and D.D. designed and implemented the method and analysed results; T.L. carried out calculations; L.M.G. discussed initial design and implementation of the research.

Corresponding author

Correspondence to Tianshu Li.

Supplementary information

Supplementary Information

Supplementary Information (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Donadio, D., Ghiringhelli, L. et al. Surface-induced crystallization in supercooled tetrahedral liquids. Nature Mater 8, 726–730 (2009). https://doi.org/10.1038/nmat2508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing