Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films

Abstract

Two-phase, vertical nanocomposite heteroepitaxial films hold great promise for (multi)functional device applications. In order to achieve practical devices, a number of hurdles need to be overcome, including the creation of ordered structures (and their formation on a large scale), achieving different combinations of materials and control of strain coupling between the phases. Here we demonstrate major advances on all these fronts: remarkable spontaneously ordered structures were produced in newly predicted compositions, vertical strain was proven to dominate the strain state in films above 20 nm thickness and strain manipulation was demonstrated by selection of phases with the appropriate elastic moduli. The work opens up a new avenue for strain control in relatively thick films and also promises new forms of ordered nanostructures for multifunctional applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: TEM micrographs of nanocomposite films.
Figure 3: X-ray diffraction data for nanocomposite films compared with pure perovskite films.
Figure 4: TEM images and models of crystallographic registry along the vertical interfaces in the nanocomposite systems studied.
Figure 5

Similar content being viewed by others

References

  1. Prellier, W., Singh, M. P. & Murugavel, P. The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, 7753 (2005).

    Article  Google Scholar 

  2. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  3. Fiebig, M., Lottermoser, T., Frohlich, D., Goitsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  4. Filippetti, A. & Hill, N. A. First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite. J. Magn. Magn. Mater. 236, 176–189 (2001).

    Article  CAS  Google Scholar 

  5. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  6. Lee, M. K., Nath, T. K., Eom, C. B., Smoak, M. C. & Tsui, F. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000).

    Article  CAS  Google Scholar 

  7. Moshnyaga, V. et al. Structural phase transition and stress accommodation in (La0.7Ca0.3MnO3)(1−X):(MgO)(X) composite films. Phys. Rev. B 66, 104421 (2002).

    Article  Google Scholar 

  8. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  9. Mahajan, R. P., Patankar, K. K., Kothale, M. B. & Patil, S. A. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite–barium titanate composites. Bull. Mater. Sci. 23, 273–279 (2000).

    Article  CAS  Google Scholar 

  10. Zhan, Q. et al. Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).

    Article  Google Scholar 

  11. Zheng, H. M. et al. Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006).

    Article  CAS  Google Scholar 

  12. Ryu, J., Carazo, A. V., Uchino, K. & Kim, H. E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Japan. J. Appl. Phys. Part 1 40, 4948–4951 (2001).

    Article  CAS  Google Scholar 

  13. Laletsin, U., Padubnaya, N., Srinivasan, G. & Devreugd, C. P. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78, 33–36 (2004).

    Article  CAS  Google Scholar 

  14. Nagarajan, V. et al. Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

    Article  Google Scholar 

  15. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  16. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  17. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers.1. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  18. Sun, H. P., Tian, W., Pan, X. Q., Haeni, J. H. & Schlom, D. G. Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3 . Appl. Phys. Lett. 84, 3298–3300 (2004).

    Article  CAS  Google Scholar 

  19. Tsui, F., Smoak, M. C., Nath, T. K. & Eom, C. B. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 76, 2421–2423 (2000).

    Article  CAS  Google Scholar 

  20. Bibes, M. et al. Nanoscale multiphase separation at La2/3Ca1/3MnO3/SrTiO3 interfaces. Phys. Rev. Lett. 8706, 067210 (2001).

    Article  Google Scholar 

  21. Karger, M. & Schilling, M. Epitaxial properties of Al-doped ZnO thin films grown by pulsed laser deposition on SrTiO3(001). Phys. Rev. B 71, 075304 (2005).

    Article  Google Scholar 

  22. Bellingeri, E. et al. Deposition of ZnO thin films on SrTiO3 single-crystal substrates and field effect experiments. Thin Solid Films 486, 186–190 (2005).

    Article  CAS  Google Scholar 

  23. Saito, K. et al. Structural characterization of BiFeO3 thin films by reciprocal space mapping. Japan. J. Appl. Phys. Part 1 45, 7311–7314 (2006).

    Article  CAS  Google Scholar 

  24. Ginoudi, A., Paloura, E. C. & Frangis, N. Performance of GaxIn1−xP/GaAs heterojunctions grown by metal–organic molecular-beam epitaxy and metal–organic vapor-phase epitaxy. J. Appl. Phys. 75, 2980–2987 (1994).

    Article  CAS  Google Scholar 

  25. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).

    Article  CAS  Google Scholar 

  26. Dore, P., Funaro, A., Sacchetti, A., Angeloni, M. & Balestrino, G. Study of infrared phonons in the La0.7Sr0.3MnO3 manganite by means of reflectance measurements on epitaxial films. Eur. Phys. J. B 37, 339–344 (2004).

    Article  CAS  Google Scholar 

  27. Haghiri-Gosnet, A. M. et al. Microstructure and magnetic properties of strained La0.7Sr0.3MnO3 thin films. J. Appl. Phys. 88, 4257–4264 (2000).

    Article  CAS  Google Scholar 

  28. Dvorak, J. et al. Are strain-induced effects truly strain induced? A comprehensive study of strained LCMO thin films. J. Appl. Phys. 97, 10C102 (2005).

    Article  Google Scholar 

  29. Gonzalez, O. J., Bistue, G., Castano, E. & Gracia, F. J. Room temperature colossal magnetoresistance in nanocrystalline La0.67Sr0.33MnO3 sputtered thin films. J. Magn. Magn. Mater. 222, 199–206 (2000).

    Article  CAS  Google Scholar 

  30. Guo, Y., Akai, D., Swada, K. & Ishida, M. Ferroelectric and pyroelectric properties of highly (110)-oriented Pb(Zr0.40Ti0.60)O3 thin films grown on Pt/LaNiO3/SiO2/Si substrates. Appl. Phys. Lett. 90, 232908 (2007).

    Article  Google Scholar 

  31. Kingon, A. I. & Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nature Mater. 4, 233–237 (2005).

    Article  CAS  Google Scholar 

  32. Mathe, V. L. Structural, dielectric and electrical properties of SmxBi1−xFeO3 ceramics. J. Magn. Magn. Mater. 263, 344–352 (2003).

    Article  CAS  Google Scholar 

  33. Kang, B. S. et al. Low field magnetotransport properties of (La0.7Sr0.3MnO3)(0.5):(ZnO)(0.5) nanocomposite films. Appl. Phys. Lett. 88, 192514 (2006).

    Article  Google Scholar 

  34. Beattie, A. G. & Samara, G. A. Pressure dependence of elastic constants of SrTiO. J. Appl. Phys. 42, 2376–2381 (1971).

    Article  CAS  Google Scholar 

  35. Hazama, H., Nemoto, Y., Goto, T., Asamitsu, A. & Tokura, Y. Ultrasonic study of perovskite manganites La1−xSrxMnO3 . Physica B 281, 487–488 (2000).

    Article  Google Scholar 

  36. Carlotti, G., Socino, G., Petri, A. & Verona, E. Acoustic investigation of the elastic properties of ZnO films. Appl. Phys. Lett. 51, 1889–1891 (1987).

    Article  CAS  Google Scholar 

  37. Palko, J. W., Kriven, W. M., Sinogeikin, S. V., Bass, J. D. & Sayir, A. Elastic constants of yttria (Y2O3) monocrystals to high temperatures. J. Appl. Phys. 89, 7791–7796 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission (Marie Curie Excellence Grant ‘NanoFen’, MEXT-CT-2004-014156), the UK Engineering and Physical Sciences Research Council (EPSRC), the US National Science Foundation (Ceramic Program, NSF 0709831) and the Los Alamos National Laboratory Directed Research and Development Project under the United States Department of Energy. We thank S. Wimbush and Y. L. Liu for assistance with the manuscript and L. Dunlop for helpful discussions. We also thank F. Aldinger of the Max Planck Institute in Stuttgart for providing P.Z. with the opportunity to undertake his diploma research in Cambridge. M. E. Vickers is thanked for assistance with the X-ray work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith L. MacManus-Driscoll.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacManus-Driscoll, J., Zerrer, P., Wang, H. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater 7, 314–320 (2008). https://doi.org/10.1038/nmat2124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing