Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrically driven phase transition in magnetite nanostructures

Abstract

Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses1 to a candidate material for magnetoelectronic devices2. In 1939, Verwey3 found that bulk magnetite undergoes a transition at TV≈120 K from a high-temperature ‘bad metal’ conducting phase to a low-temperature insulating phase. He suggested4 that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial5,6,7,8,9,10,11. Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hysteretic conductance switching below TV.
Figure 2: Differential conductance plots of the switching.
Figure 3: Power required to switch from the insulating into the more conducting state as a function of temperature, for a device based on 20 nm diameter nanocrystals.
Figure 4: Switching voltages in a series of film devices as a function of channel length at several temperatures.

Similar content being viewed by others

References

  1. Mills, A. A. The lodestone: History, physics, and formation. Ann. Sci. 61, 273–319 (2004).

    Article  Google Scholar 

  2. Coey, J. M. D. & Chien, C. L. Half-metallic ferromagnetic oxides. Mater. Res. Soc. Bull. 28, 720–724 (2003).

    Article  CAS  Google Scholar 

  3. Verwey, E. J. W. Electronic conduction in magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

    Article  CAS  Google Scholar 

  4. Verwey, E. J. W. & Haayman, P. W. Electronic conductivity and transition point of magnetite. Physica 8, 979–987 (1941).

    Article  CAS  Google Scholar 

  5. Walz, F. The Verwey transition—a topical review. J. Phys. Condens. Matter 14, R285–R340 (2002).

    Article  CAS  Google Scholar 

  6. Garciá, J. & Subías, G. The Verwey transition—a new perspective. J. Phys. Condens. Matter 16, R145–R178 (2004).

    Article  Google Scholar 

  7. Huang, D. L. et al. Charge-orbital ordering and Verwey transition in magnetite measured by resonant soft x-ray scattering. Phys. Rev. Lett. 96, 096401 (2006).

    Article  CAS  Google Scholar 

  8. Nazarenko, E. et al. Resonant x-ray diffraction studies on the charge ordering in magnetite. Phys. Rev. Lett. 97, 056403 (2007).

    Article  Google Scholar 

  9. Subías, G. et al. Magnetite, a model system for mixed-valence oxides, does not show charge ordering. Phys. Rev. Lett. 93, 156408 (2004).

    Article  Google Scholar 

  10. Rozenberg, G. K. et al. Origin of the Verwey transition in magnetite. Phys. Rev. Lett. 96, 045705 (2006).

    Article  Google Scholar 

  11. Piekarz, P., Parlinksi, K. & Oleś, A. M. Mechanism of the Verwey transition in magnetite. Phys. Rev. Lett. 97, 156402 (2006).

    Article  Google Scholar 

  12. Gasparov, L. V. et al. Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 62, 7939–7944 (2000).

    Article  CAS  Google Scholar 

  13. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  14. Coey, M. Condensed-matter physics: Charge-ordering in oxides. Nature 430, 155–157 (2004).

    Article  CAS  Google Scholar 

  15. Leonov, I., Yaresko, A. N., Antonov, V. N. & Anisimov, V. I. Electronic structure of charge-ordered Fe3O4 from calculated optical, magneto-optical Kerr effect, and O K-edge x-ray absorption spectra. Phys. Rev. B 74, 165117 (2006).

    Article  Google Scholar 

  16. Pinto, H. P. & Elliot, S. D. Mechanism of the Verwey transition in magnetite: Jahn–Teller distortion and charge ordering patterns. J. Phys. Condens. Matter 18, 10427–10436 (2006).

    Article  CAS  Google Scholar 

  17. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    Article  CAS  Google Scholar 

  18. Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004).

    Article  CAS  Google Scholar 

  19. Yu, W. W., Falkner, J. C., Yavuz, C. T. & Colvin, V. L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 2306–2307 (2004).

    Article  Google Scholar 

  20. Zhou, Y., Jin, X. & Shvets, I. V. Enhancement of the magnetization saturation in magnetite (100) epitaxial films by thermo-chemical treatment. J. Appl. Phys. 95, 7357–7359 (2004).

    Article  CAS  Google Scholar 

  21. Pérez-Diete, V. et al. Thermal decomposition of surfactant coatings on Co and Ni nanocrystals. Appl. Phys. Lett. 83, 5053–5055 (2003).

    Article  Google Scholar 

  22. Zeng, H. et al. Magnetotransport of magnetite nanoparticle arrays. Phys. Rev. B 73, 020402(R) (2006).

    Article  Google Scholar 

  23. Shvets, I. V. et al. Long-range charge order on the Fe3O4(001) surface. Phys. Rev. B 70, 155406 (2004).

    Article  Google Scholar 

  24. Burch, T. et al. Switching in magnetite: A thermally driven magnetic phase transition. Phys. Rev. Lett. 23, 1444–1447 (1969).

    Article  CAS  Google Scholar 

  25. Freud, P. J. & Hed, A. Z. Dynamics of the electric-field-induced conductivity transition in magnetite. Phys. Rev. Lett. 23, 1440–1443 (1969).

    Article  CAS  Google Scholar 

  26. Duchene, J., Terraillon, M., Pailly, P. & Adam, G. Filamentary conduction in VO2 coplanar thin-film devices. Appl. Phys. Lett. 19, 115–117 (1971).

    Article  CAS  Google Scholar 

  27. Gu, Q., Falk, A., Wu, J., Ouyang, L. & Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1−xO2 nanobeams. Nano Lett. 7, 363–366 (2007).

    Article  CAS  Google Scholar 

  28. Salazar, A., Oleaga, A., Wiechec, A., Tarnawski, Z. & Kozlowski, A. Thermal diffusivity of Fe3−xZnxO4 . IEEE Trans. Magn. 40, 2820–2822 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy grant DE-FG02-06ER46337. D.N. also acknowledges the David and Lucille Packard Foundation and the Research Corporation. V.L.C. acknowledges the NSF Center for Biological and Environmental Nanotechnology (EEC-0647452), Office of Naval Research (N00014-04-1-0003) and the US Environmental Protection Agency Star Program (RD-83253601-0). C.T.Y. acknowledges a Robert A. Welch Foundation (C-1349) graduate fellowship. R.G.S.S. and I.V.S. acknowledge the Science Foundation Ireland grant 06/IN.1/I91.

Author information

Authors and Affiliations

Authors

Contributions

S.L. fabricated and measured the devices in this work and analysed the data. A.F. fabricated devices and carried out X-ray diffraction characterization of the nanocrystal materials. D.N. and S.L. wrote the paper. J.T.M. and C.Y.Z. made the nanocrystals in V.L.C.’s laboratory and V.L.C. contributed expertise in nanomaterials chemistry and characterization. R.G.S.S. and I.V.S. grew the magnetite films and I.V.S. contributed expertise on magnetite physical properties. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Douglas Natelson.

Supplementary information

Supplementary Information

Supplementary information, figures S1-S6 and supplementary references/notes (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Fursina, A., Mayo, J. et al. Electrically driven phase transition in magnetite nanostructures. Nature Mater 7, 130–133 (2008). https://doi.org/10.1038/nmat2084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing