Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A microdiffraction set-up for nanoporous metal–organic-framework-type solids

Abstract

For the past decade, the emerging class of porous metal–organic frameworks1,2,3 has been becoming one of the most promising materials for the construction of extralarge pore networks in view of potential applications in catalysis, separation and gas storage. The knowledge of the atomic arrangements in these crystalline compounds is a key point for the understanding of the chemical and physical properties. Their crystal size limits the use of single-crystal diffraction analysis, and synchrotron radiation facilities4 may allow for the analysis of tiny crystals. We present here a microdiffraction set-up for the collection of Bragg intensities, which pushes down the limit to the micrometre scale by using a microfocused X-ray beam of 1 μm. We report the structure determination of a new porous metal–organic-framework-type aluminium trimesate (MIL-110) from a single crystal of a few micrometres length, showing very weak scattering factors owing to the composition of the framework (light elements) and very low density. Its structure is built up from a honeycomb-like network with hexagonal 16 Å channels, involving the connection of octahedrally coordinated aluminium octameric motifs with the trimesate ligands. Solid-state NMR (27Al,13C,1H) and molecular modelling are finally considered for the structural characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrograph of hexagonal needle-like single crystals of MIL-110.
Figure 2: Representation of the structure of MIL-110.
Figure 3: Solid-state 27Al NMR spectroscopy of MIL-110.
Figure 4: Solid-state 1H and 13C NMR spectroscopy of MIL-110.
Figure 5: Irradiated crystal volume— Vcryst—scaled against scattering power— S—for a selected high-resolution single-crystal microdiffraction experiment; adapted from refs 418.

Similar content being viewed by others

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Edn 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  Google Scholar 

  4. Riekel, C., Burghammer, M. & Schertler, G. Protein crystallographically microdiffraction. Curr. Opin. Struct. Biol. 15, 556–562 (2005).

    Article  CAS  Google Scholar 

  5. Férey, G. et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Edn 43, 6296–6301 (2004).

    Article  Google Scholar 

  6. Mellot-Draznieks, C., Dutour, J. & Férey, G. Computational study of MOF phases and structure prediction. Angew. Chem. Int. Edn 43, 6290 (2004).

    Article  CAS  Google Scholar 

  7. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  8. Loiseau, T. et al. Hydrothermal synthesis and crystal structure of a new three-dimensional aluminium–organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc). H2O. C.R. Chim. 8, 765–772 (2005).

    Article  CAS  Google Scholar 

  9. Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006).

    Article  CAS  Google Scholar 

  10. Schubert, M., Müller, U., Tonigold, M. & Ruetz, R. Methods for producing organometallic framework materials containing main group metal ions. Patent WO 2007/023134 A1 (2007).

  11. Riekel, C., Burghammer, M. & Müller, M. Microbeam small-scattering experiments and their combination with microdiffraction. J. Appl. Crystallogr. 33, 421–423 (2000).

    Article  CAS  Google Scholar 

  12. Sheldrick, G. M. SHELXS-86—A program for automatic solution of crystal structures. Acta Crystallogr. A 46, 467–473 (1990).

    Article  Google Scholar 

  13. Sheldrick, G. M. SHELX-97—A Program for Crystal Structure Refinement. Release 97-2 (Univ. of Goettingen, Germany, 1997).

    Google Scholar 

  14. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837–838 (1999).

    Article  CAS  Google Scholar 

  15. Brese, N. E. & O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 47, 192–197 (1991).

    Article  Google Scholar 

  16. Casey, W. H., Olmstead, M. M. & Phillips, B. L. A new aluminum hydroxide octamer, [Al8(OH)14(H2O)18](SO4)5.16H2O. Inorg. Chem. 44, 4888–4890 (2005).

    Article  CAS  Google Scholar 

  17. Di Renzo, F., Galarneau, A., Trens, P. & Fajula, F. in Handbook of Porous Solids Vol. 3 (eds Schüth, F., Sing, K. W. & Weitkamp, J.) 1311–1395 (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  18. Riekel, C. New avenues in X-ray microbeam experiments. Rep. Prog. Phys. 63, 233–262 (2000).

    Article  CAS  Google Scholar 

  19. Amoureux, J. P. & Fernandez, C. Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei. Solid State NMR 10, 211–223 (1998).

    Article  CAS  Google Scholar 

  20. Neder, R. B. et al. Single-crystal diffraction by submicrometer sized kaolinite; observation of Bragg reflections and diffuse scattering. Z. Kristallogr. 211, 763 (1996).

    CAS  Google Scholar 

  21. Burghammer, M. Röntgenbeugungsexperimente an mikrometer- und submikrometer-grossen Einkristallen. Thesis, Ludwig Maximilians Univ., Munich (1997).

  22. Gaillot, A. C. et al. Structure of synthetic K-rich birnessite obtained by high-temperature decompostion of KMnO4. I. Two-layer polytype from 800C experiment. Chem. Mater. 15, 4666–4678 (2003).

    Article  CAS  Google Scholar 

  23. Li, J., Edwards, P., Burghammer, M., Villa, C. & Schertler, G. F. X. Structure of bovine rhodosin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    Article  CAS  Google Scholar 

  24. Popov, D. et al. Amylose single crystals: Unit cell refinement from synchrotron radiation microdiffraction data. Macromolecules 39, 3704–3706 (2006).

    Article  CAS  Google Scholar 

  25. Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  26. Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N. & Spudich, J. L. Crystal structure of sensory rhodopsin II at 2. 4 A: Insights into color tuning and transducer interaction. Science 293, 1499–1503 (2001).

    Article  CAS  Google Scholar 

  27. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. Bacteriorhodopsin. Science 277, 1676–1681 (1997).

    Article  CAS  Google Scholar 

  28. Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. The EMBO J. 18, 1124–1136 (1999).

    Article  CAS  Google Scholar 

  29. Emsley, J., Knight, C. G., Farndale, R. W. & Barnes, M. J. Structure of the integrin alpha 2 beta 1-binding collagen peptide. J. Mol. Biol. 335, 1019 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.V., N.G., T.L. and G.F. were involved in the synthesis and characterization of porous metal–organic framework materials. D.P., M.B. and C.R. were involved in the development of the new microdiffraction set-up at station ID 13 (ESRF). M.H. and F.T. were involved in the solid-state NMR characterization. C.M.-D. was involved in computer molecular modelling.

Corresponding author

Correspondence to Thierry Loiseau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary materials, tables and images (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkringer, C., Popov, D., Loiseau, T. et al. A microdiffraction set-up for nanoporous metal–organic-framework-type solids. Nature Mater 6, 760–764 (2007). https://doi.org/10.1038/nmat1991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing