Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic annealing process and its impact on superconductivity in T′-structure electron-doped copper oxides

Abstract

High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO2 planes of their insulating parent compounds. Whereas hole doping quickly induces metallic behaviour and superconductivity in many cuprates, electron doping alone is insufficient in materials such as R2CuO4 (R is Nd, Pr, La, Ce and so on), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO2 planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures, magnetic susceptibilities and TGA measurements.
Figure 2: Single-crystal X-ray diffraction mesh scans in the (H, K) plane at L=1.1.
Figure 3: X-ray powder-diffraction patterns from crushed single-crystal and ceramic powder samples.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible High T c Superconductivity in the Ba–La–Cu–O System. Z. Phys. B 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  2. Tokura, Y., Takagi, H. & Uchida, S. A superconducting copper oxide compound with electrons as the charge carriers. Nature 337, 345–347 (1989).

    Article  CAS  Google Scholar 

  3. Takagi, H., Uchida, S. & Tokura, Y. Superconductivity produced by electron doping in CuO2-layered compounds. Phys. Rev. Lett. 62, 1197–1200 (1989).

    Article  CAS  Google Scholar 

  4. Takayama-Muromachi, E., Izumi, F., Uchida, Y., Kato, K. & Asano, H. Oxygen deficiency in the electron-doped superconductor Nd2−x Ce x CuO4−y . Physica C 159, 634–638 (1989).

    Article  CAS  Google Scholar 

  5. Cava, R. J. et al. Metal atom stoichiometry in the electron doped superconductor (Nd,Ce)2CuO4 . Physica C 199, 65–72 (1992).

    Article  CAS  Google Scholar 

  6. Kim, J. S. & Gaskell, D. R. The phase stability diagrams for the systems Nd2CuO4−δ and Nd1.85Ce0.15O4−δ . Physica C 209, 381–388 (1993).

    Article  CAS  Google Scholar 

  7. Jiang, W., Peng, J. L., Li, Z. Y. & Greene, R. L. Transport properties of Nd1.85Ce0.15O4+δ crystals before and after reduction. Phys. Rev. B 47, 8151–8155 (1993).

    Article  CAS  Google Scholar 

  8. Radaelli, P. G., Jorgensen, J. D., Schultz, A. J., Peng, J. L. & Greene, R. L. Evidence of apical oxygen in Nd2CuO y determined by single-crystal neutron diffraction. Phys. Rev. B 49, 15322–15326 (1994).

    Article  CAS  Google Scholar 

  9. Prado, F., Caneiro, A. & Serquis, A. Oxygen non-stoichiometry of Nd1.85Ce0.15Cu1+δ O y as a function of δ and its relation with the superconducting properties. J. Therm. Anal. 48, 1027–1038 (1997).

    Article  CAS  Google Scholar 

  10. Xu, X. Q., Mao, S. N., Jiang, W., Peng, J. L. & Greene, R. L. Oxygen dependence of the transport properties of Nd1.78Ce0.22CuO4±δ . Phys. Rev. B 53, 871–875 (1996).

    Article  CAS  Google Scholar 

  11. Schultz, A. J., Jorgensen, J. D., Peng, J. L. & Greene, R. L. Single-crystal neutron-diffraction structures of reduced and oxygenated Nd2−x Ce x CuO y . Phys. Rev. B 53, 5157–5159 (1996).

    Article  CAS  Google Scholar 

  12. Seffar, A. et al. Copper deficiency and superconductivity in Nd2−x Ce x CuO4 oxides. Physica C 259, 75–82 (1996).

    Article  CAS  Google Scholar 

  13. Prado, F., Briático, J., Caneiro, A., Tovar, M. & Causa, M. T. Copper Content and Superconductivity of Nd1.85Ce0.15Cu1+δ O y . Solid State Commun. 90, 695–699 (1994).

    Article  CAS  Google Scholar 

  14. Uefuji, T., Kurahashi, K., Fujita, M., Matsuda, M. & Yamada, K. Electron-doping effect on magnetic order and superconductivity in Nd2−x Ce x CuO4 single crystals. Physica C 378-381, 273–277 (2002).

    Article  CAS  Google Scholar 

  15. Kurahashi, K., Matsushita, H., Fujita, M. & Yamada, K. Heat treatment effects on the superconductivity and crystal structure of Nd1.85Ce0.15CuO4 studied using a single crystal. J. Phys. Soc. Jpn. 71, 910–915 (2002).

    Article  CAS  Google Scholar 

  16. Richard, P. et al. Role of oxygen nonstoichiometry and the reduction process on the local structure of Nd2−x C e x CuO4±δ . Phys. Rev. B 70, 064513 (2004).

    Article  Google Scholar 

  17. Riou, G., Richard, P., Jandl, S., Poirier, M. & Fournier, P. Pr3+ crystal-field excitation study of apical oxygen and reduction processes in Pr2−x Ce x CuO4±δ . Phys. Rev. B 69, 024511 (2004).

    Article  Google Scholar 

  18. Matsuura, M. et al. Effect of a magnetic field on the long-range magnetic order in insulating Nd2CuO4 and nonsuperconducting and superconducting Nd1.85Ce0.15CuO4 . Phys. Rev. B 68, 144503 (2003).

    Article  Google Scholar 

  19. Mang, P. K. et al. Phase decomposition and chemical inhomogeneity in Nd2−x Ce x CuO4±δ . Phys. Rev. B 70, 094507 (2004).

    Article  Google Scholar 

  20. Kang, H. J. et al. Electronically competing phases and their magnetic field dependence in electron-doped nonsuperconducting and superconducting Pr0.88LaCe0.12CuO4±δ . Phys. Rev. B 71, 214512 (2005).

    Article  Google Scholar 

  21. Kimura, H. et al. X-ray and electron diffraction study of a precipitation phase in Nd1.85Ce0.15CuO4+y single crystal. J. Phys. Soc. Jpn. 74, 2282–2286 (2005).

    Article  CAS  Google Scholar 

  22. Richard, P., Poirier, M., Jandl, S. & Fourier, P. Impact of the reduction process on the long-range antiferromagnetism in Nd1.85Ce0.15CuO4 . Phys. Rev. B 72, 184514 (2005).

    Article  Google Scholar 

  23. Higgins, J. S., Dagan, Y., Barr, M. C., Weaver, B. D. & Greene, R. L. Role of oxygen in the electron-doped superconducting cuprates. Phys. Rev. B 73, 104510 (2006).

    Article  Google Scholar 

  24. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    Article  CAS  Google Scholar 

  25. Shan, L. et al. Distinct pairing symmetries in Nd1.85Ce0.15CuO4−y and La1.89Sr0.11CuO4 single crystals: evidence from comparative tunneling measurements. Phys. Rev. B 72, 144506 (2005).

    Article  Google Scholar 

  26. Brese, N. E. & O’Keeffe, M. Bond-valence parameters for solids. Acta Cryst. B 47, 192–197 (1991).

    Article  Google Scholar 

  27. Dai, P. et al. Electronic inhomogeneity and competing phases in electron-doped superconducting Pr0.88LaCe0.12CuO4−δ . Phys. Rev. B 71, 100502(R) (2005).

    Article  Google Scholar 

  28. Wilson, S. D. et al. Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4−δ . Nature 442, 59–62 (2006).

    Article  CAS  Google Scholar 

  29. Gauthier, J. et al. Different roles of cerium substitution and oxygen reduction in transport in Pr2−x Ce x CuO4 thin films. Phys. Rev. B 75, 024424 (2007).

    Article  Google Scholar 

  30. Armitage, N. P. et al. Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 88, 257001 (2002).

    Article  CAS  Google Scholar 

  31. Matsui, H. et al. Direct observation of a nonmonotonic d x 2 - y 2 -wave superconducting gap in the electron-doped high-T c superconductor Pr0.89LaCe0.11CuO4 . Phys. Rev. Lett. 95, 017003 (2005).

    Article  CAS  Google Scholar 

  32. Smith, M. G., Mathiram, A., Zhou, J., Goodenough, J. B. & Markert, J. T. Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1−y Nd y CuO2 . Nature 351, 549–551 (1991).

    Article  CAS  Google Scholar 

  33. Kirimoto, S., Ueda, K., Naito, M. & Imai, T. Superconducting thin films of electron-doped infinite-layer Sr1−x La x CuO2 grown by molecular beam expitaxy. Physica C 378–381, 127–130 (2002).

    Article  Google Scholar 

  34. Jung, C. U. et al. Synthesis and pinning properties of the infinite-layer superconductor Sr0.9La0.1CuO2 . Physica C 366, 299–305 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Attenkofer for the help with the synchrotron X-ray-scattering experiments at the 11-ID beamline. The X-ray- and neutron-scattering work is supported in part by the US National Science Foundation with grant No. DMR-0453804 and by an award from the Research Corporation. The PLCCO single-crystal growth at UT is supported by the US DOE BES under contract No. DE-FG02-05ER46202. ORNL is supported by the US DOE grant No. DE-AC05-00OR22725 through UT/Battelle LLC. Work at Argonne was supported by the US DOE under contract No. DE-AC02-06CH11357. The part of the work done in Japan was supported by a Grant-in-Aid for Science provided by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

P.D., H.J.K., B.J.C. and S.R. designed the experiment. H.J.K., P.D., B.J.C., P.J.C., S.R. and P.L.L. carried out X-ray-scattering experiments. H.J.K. and Q.H. carried out neutron measurements and refinements. H.J.K. carried out ICP measurements. S.L. prepared ceramic and single crystals of PLCCO and carried out TGA measurements. S.K. and Y.A. also grew single crystals of PLCCO. The paper was written by P.D., H.J.K. and B.J.C., and other co-authors made comments on the paper.

Corresponding authors

Correspondence to Hye Jung Kang or Pengcheng Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Dai, P., Campbell, B. et al. Microscopic annealing process and its impact on superconductivity in T′-structure electron-doped copper oxides. Nature Mater 6, 224–229 (2007). https://doi.org/10.1038/nmat1847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing