Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical role of hydrogen for superconductivity in nickelates

Abstract

The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1,2,3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4,5,6,7,8,9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x 0.2–0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS–Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogen detection of as-grown and infinite-layer nickelates.
Fig. 2: Transport properties and H-doping phase diagram of Nd0.8Sr0.2NiO2Hx.
Fig. 3: XAS and RIXS characterization.
Fig. 4: Electronic structure of Nd0.8Sr0.2NiO2Hx.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the Figshare data repository, https://figshare.com/articles/dataset/Critical_Role_of_Hydrogen_for_Superconductivity_in_Infinite-layer_Nickelates/21591546. Source data are provided with this paper.

Code availability

The code that supports the findings of this study is available from the corresponding author upon request.

References

  1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1—evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc., Faraday Trans. 2 79, 1181–1194 (1983).

    Article  CAS  Google Scholar 

  4. Katayama, T. et al. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films. J. Appl. Phys. 120, 085305 (2016).

    Article  ADS  Google Scholar 

  5. Tassel, C. et al. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature. Angew. Chem. Int. Ed. 53, 10377–10380 (2014).

    Article  CAS  Google Scholar 

  6. Yajima, T. et al. A labile hydride strategy for the synthesis of heavily nitridized BaTiO3. Nat. Chem. 7, 1017–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Yajima, T. et al. Epitaxial thin films of ATiO3–xHx (A = Ba, Sr, Ca) with metallic conductivity. J. Am. Chem. Soc. 134, 8782–8785 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Poeppelmeier, K. A mixed oxide-hydride perovskite. Science 295, 1849–1849 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto, J. et al. Superconductivity at 48 K of heavily hydrogen-doped SmFeAsO epitaxial films grown by topotactic chemical reaction using CaH2. Phys. Rev. Mater. 3, 103401 (2019).

    Article  Google Scholar 

  10. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Li, D. et al. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zhao, D. et al. Intrinsic spin susceptibility and pseudogaplike behavior in infinite-layer LaNiO2. Phys. Rev. Lett. 126, 197001 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cui, Y. et al. NMR evidence of antiferromagnetic spin fluctuations in Nd0.85Sr0.15NiO2. Chin. Phys. Lett. 38, 067401 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Fowlie, J. et al. Intrinsic magnetism in superconducting infinite-layer nickelates. Nat. Phys. 18, 1043–1047 (2022).

    Article  CAS  Google Scholar 

  16. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Krieger, G. et al. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett. 129, 027002 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Tam, C. C. et al. Charge density waves in infinite-layer NdNiO2 nickelates. Nat. Mater. 21, 1116–1120 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. 18, 869–873 (2022).

    Article  CAS  Google Scholar 

  20. Gu, Q. et al. Single particle tunneling spectrum of superconducting Nd1−xSrxNiO2 thin films. Nat. Commun. 11, 6027 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, Q., Zhao, Y., Zhou, X.-J. & Zhu, Z. Preparation of superconducting thin films of infinite-layer nickelate Nd0.8Sr0.2NiO2. Chin. Phys. Lett. 38, 077401 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Zhou, X. et al. Antiferromagnetism in Ni-based superconductors. Adv. Mater. 34, 2106117 (2022).

    Article  CAS  Google Scholar 

  23. Nakamura, S., Iwasa, N., Senoh, M. & Mukai, T. Hole compensation mechanism of P-type GaN films. Jpn. J. Appl. Phys. 31, 1258–1266 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Puphal, P. et al. Investigation of hydrogen incorporations in bulk infinite-layer nickelates. Front. Phys. 10, 834682 (2022).

    Article  Google Scholar 

  25. Malyi, O. I., Varignon, J. & Zunger, A. Bulk NdNiO2 is thermodynamically unstable with respect to decomposition while hydrogenation reduces the instability and transforms it from metal to insulator. Phys. Rev. B. 105, 014106 (2022).

    Article  ADS  CAS  Google Scholar 

  26. Si, L. et al. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys. Rev. Lett. 124, 166402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Ding, X. et al. Stability of superconducting Nd0.8Sr0.2NiO2 thin films. Sci. China-Phys. Mech. Astron. 65, 267411 (2022).

    Article  ADS  CAS  Google Scholar 

  28. Zhou, Y. et al. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Bang, J., Matsuishi, S. & Hosono, H. Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl. Phys. Lett. 110, 232105 (2017).

    Article  ADS  Google Scholar 

  30. Chen, Z. et al. Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy. Matter 5, 1806–1815 (2022).

    Article  CAS  Google Scholar 

  31. Rossi, M. et al. Orbital and spin character of doped carriers in infinite-layer nickelates. Phys. Rev. B. 104, L220505 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Higashi, K., Winder, M., Kuneš, J. & Hariki, A. Core-level X-ray spectroscopy of infinite-layer nickelate: LDA + DMFT study. Phys. Rev. X. 11, 041009 (2021).

    CAS  Google Scholar 

  33. Khazaei, M. et al. Nearly free electron states in MXenes. Phys. Rev. B. 93, 205125 (2016).

    Article  ADS  Google Scholar 

  34. Lee, K., Kim, S. W., Toda, Y., Matsuishi, S. & Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Matsushita, Y.-i, Furuya, S. & Oshiyama, A. Floating electron states in covalent semiconductors. Phys. Rev. Lett. 108, 246404 (2012).

    Article  ADS  PubMed  Google Scholar 

  36. Wang, J. et al. Anomalous Dirac plasmons in 1D topological electrides. Phys. Rev. Lett. 123, 206402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Nomura, Y. et al. Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys. Rev. B 100, 205138 (2019).

    Article  ADS  CAS  Google Scholar 

  38. Gu, Y., Zhu, S., Wang, X., Hu, J. & Chen, H. A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates. Commun. Phys. 3, 84 (2020).

    Article  CAS  Google Scholar 

  39. Shen, Y. et al. Role of oxygen states in the low valence nickelate La4Ni3O8. Phys. Rev. X. 12, 011055 (2022).

    CAS  Google Scholar 

  40. Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor. Phys. Rev. Lett. 105, 057003 (2010).

    Article  ADS  PubMed  Google Scholar 

  41. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Radoslovich, E. The structure of muscovite, KAl2(Si3Al)O10(OH)2. Acta Crystallogr. 13, 919–932 (1960).

    Article  CAS  Google Scholar 

  43. Zhou, K.-J. et al. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. J. Synchrotron Rad. 29, 563–580 (2022).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  46. Bellaiche, L. & Vanderbilt, D. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B. 61, 7877–7882 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.Q. acknowledges the support by National Natural Science Foundation of China (grant nos. 12274061, 52072059 and 11774044), Science and Technology Department of Sichuan Province (grant nos. 2021JDJQ0015 and 2022ZYD0014) and Fundamental Research Funds for the Central Universities (grant no. ZYGX2020J023). X.S. and B.H. acknowledge the support from the NSFC (grant no. 12088101) and NSAF (grant no. U2230402). We thank Diamond Light Source for providing beam time under proposal ID NT30296. S.L. thanks Australian Research Council Discovery Projects (grant nos. DP220103229 and DP19013661) for the financial support. Computations were done at Tianhe-JK cluster at CSRC. TOF–SIMS was conducted in the University of New South Wales Mark Wainwright Analytical Centre.

Author information

Authors and Affiliations

Authors

Contributions

L.Q. designed the project. L.Q., K.-J.Z. and B.H. interpreted the experimental and theoretical data and supervised the project. X.D. performed thin film growth, XRD measurement, electrical properties and Hall effect characterizations. M.X. and Y.Z. helped with film growth and post-reduction. H.L. helped with electrical properties measurement. X.W. and Q.W. helped with film growth and physical property system measurements. C.C.T., J.C., M.G.-F., S.A. and K.-J.Z. performed XAS and RIXS measurements. J.Z. and S.L. performed SIMS measurements. M.W. and P.G. performed the transmission electron microscopy measurements. X.S. and B.H. performed DFT calculations. H.X. and X.Z. helped with DFT theory study. All the authors participated in data analysis and discussion. K.-J.Z., X.D., L.Q. and B.H. drafted the manuscript with input from all authors.

Corresponding authors

Correspondence to Qingyuan Wang, Bing Huang, Ke-Jin Zhou or Liang Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Characterization of perovskite structure and description of topotactical reduction process.

a, b, Typical RHEED intensity oscillation and RHEED pattern along SrTiO3 [101] azimuth direction for Nd0.8Sr0.2NiO3 films. The oscillations indicate that the film grows layer by layer during the initial stage of growth. The layer-by-layer growth gradually disappeared as the film thickened. c, Typical XRD of as-grown Nd0.8Sr0.2NiO3 films. Nd0.8Sr0.2NiO3 (001) and (002) diffraction peaks are located at 23.7° and 48.3°, respectively d, Illustration of the reduction heating process. During the reduction time the sample is maintained at the temperature of 300 °C.

Source Data

Extended Data Fig. 2 X-ray diffraction for all Nd0.8Sr0.2NiO2Hx films.

XRD scans of films with reduction time varied from 1 min to 420 min. The insert picture shows the corresponding c lattice parameters.

Source Data

Extended Data Fig. 3 SIMS spectra of other elements in thin film and substrate.

SIMS signals of O, Ti, Ni, Sr, Nd secondary ions in the films under different H doping levels.

Source Data

Extended Data Fig. 4 Crystal structure and SIMS spectrum of mica.

a, Crystal structure of mica with the formula of KAl2[AlSi3O10](OH)2. b, SIMS spectrum of H, O, Al, K, Si secondary ions in mica as a reference sample for calibration.

Source Data

Extended Data Fig. 5 Zoom-in view of ρ(T) with different H concentrations.

The temperature-dependent resistivities of Nd0.8Sr0.2NiO2Hx films with x varying from 0.19 to 0.33.

Source Data

Extended Data Fig. 6 Crystal structure of Nd0.8Sr0.2NiO2Hx.

a-c, Lowest energy configurations of Nd0.8Sr0.2NiO2Hx (x = 0, 0.25 and 0.5) in 2×2×2 supercell, where H forms 1D chain structure along c direction [see details in Supplementary Note 12]. The green shaded areas indicate the unit cells. These structures are used for electronic structure calculations in Fig. 4.

Extended Data Fig. 7 RIXS spectra of Nd0.8Sr0.2NiO2Hx.

Low-energy RIXS intensity maps (a-c) and the integrated quasielastic region (d–f) of three Nd0.8Sr0.2NiO2Hx samples with x = 0.19 (a, d), 0.26 (b, e) and 0.33 (c, f), respectively. No sign of CDWs is present in any probed samples.

Source Data

Extended Data Table 1 Hopping energy t and onsite energy difference ∆ (in units of eV) without and with the insertion of H in Nd0.8Sr0.2NiO2Hx (x = 0.25)

Supplementary information

Supplementary Information

Supplementary Notes 1–18, Figs. 1–19, Tables 1 and 2 and references.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Tam, C.C., Sui, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023). https://doi.org/10.1038/s41586-022-05657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05657-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing