Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

From brittle to ductile fracture of bone

Abstract

Toughness is crucial to the structural function of bone. Usually, the toughness of a material is not just determined by its composition, but by the ability of its microstructure to dissipate deformation energy without propagation of the crack1. Polymers are often able to dissipate energy by viscoplastic flow or the formation of non-connected microcracks2. In ceramics, well-known toughening mechanisms are based on crack ligament bridging and crack deflection3. Interestingly, all these phenomena were identified in bone4,5,6,7,8,9,10,11,12, which is a composite of a fibrous polymer (collagen) and ceramic nanoparticles (carbonated hydroxyapatite)13,14,15,16. Here, we use controlled crack-extension experiments to explain the influence of fibre orientation on steering the various toughening mechanisms. We find that the fracture energy changes by two orders of magnitude depending on the collagen orientation, and the angle between collagen and crack propagation direction is decisive in switching between different toughening mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The toughening mechanisms in bone.
Figure 2: The experimental setup of the controlled crack-extension experiment.
Figure 3: Crack extension as a function of the collagen angle γ.
Figure 4: Scanning electron micrographs of the crack path.

Similar content being viewed by others

References

  1. Hahn, G. T. The influence of microstructure on brittle fracture toughness. Metall. Trans. A 15, 947–959 (1984).

    Article  Google Scholar 

  2. Bower, D. I. An Introduction to Polymer Physics (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  3. Sakai, M. & Bradt, R. C. Fracture toughness testing of brittle materials. Int. Mater. Rev. 38, 53–78 (1993).

    Article  Google Scholar 

  4. Thompson, J. B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    Article  Google Scholar 

  5. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bond fracture. Nature Mater. 4, 612–616 (2005).

    Article  Google Scholar 

  6. Zioupos, P. & Currey, J. D. The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978–986 (1994).

    Article  Google Scholar 

  7. Zioupos, P., Wang, X. T. & Currey, J. D. The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin. Biomech. 11, 365–375 (1996).

    Article  Google Scholar 

  8. Vashishth, D., Tanner, K. E. & Bonfield, W. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36, 121–124 (2003).

    Article  Google Scholar 

  9. Liu, D., Weiner, S. & Wagner, H. D. Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens. J. Biomech. 32, 647–654 (1999).

    Article  Google Scholar 

  10. Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater. 2, 164–168 (2003).

    Article  Google Scholar 

  11. Nalla, R. K., Kruzic, J. J. & Ritchie, R. O. On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34, 790–798 (2004).

    Article  Google Scholar 

  12. Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217–231 (2005).

    Article  Google Scholar 

  13. Currey, J. D. The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol. 202, 3285–3294 (1999).

    Google Scholar 

  14. Weiner, S. & Wagner, H. D. The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  Google Scholar 

  15. Fratzl, P., Gupta, H. S., Paschalis, E. P. & Roschger, P. Structural and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123 (2004).

    Article  Google Scholar 

  16. Gao, H., Baohua, J., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  Google Scholar 

  17. Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nature Mater. 2, 810–814 (2003).

    Article  Google Scholar 

  18. Kamat, S., Su, X., Ballarini, R. & Heuer, A. H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000).

    Article  Google Scholar 

  19. Aizenberg, J. et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    Article  Google Scholar 

  20. Giraud-Guille, M. Plywood structures in nature. Curr. Opin. Solid State Mater. Sci. 3, 221–227 (1998).

    Article  Google Scholar 

  21. Wagner, H. D. & Weiner, S. On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 25, 1311–1320 (1992).

    Article  Google Scholar 

  22. Gupta, H. S. et al. Nanoscale deformation mechanisms in bone. Nano Lett. 5, 2108–2111 (2005).

    Article  Google Scholar 

  23. Peterlik, H. Crack bridging stresses in alumina during crack extension. J. Mater. Sci. Lett. 20, 1703–1705 (2001).

    Article  Google Scholar 

  24. Behiri, J. C. & Bonfield, W. Orientation dependence of the fracture-mechanics of cortical bone. J. Biomech. 22, 863–872 (1989).

    Article  Google Scholar 

  25. Martin, R. B. & Boardman, D. L. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J. Biomech. 26, 1047–1054 (1993).

    Article  Google Scholar 

  26. Reilly, D. T. & Burstein, A. H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393–405 (1975).

    Article  Google Scholar 

  27. Currey, J. D. Bones—Structure and Mechanics (Princeton Univ. Press, Princeton, New Jersey, 2002).

    Google Scholar 

  28. Katz, J. L. & Meunier, A. The elastic anisotropy of bone. J. Biomech. 20, 1063–1070 (1987).

    Article  Google Scholar 

  29. Hull, D. & Clyne, T. W. An Introduction to Composite Materials 2nd edn (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  30. Martin, R. B. & Ishida, J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J. Biomech. 22, 419–426 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the AUVA (Austrian Insurance for Occupational Risk), by the WGKK (Social Health Insurance Vienna) and the FWF (Austrian Science Funds, project P16880-B13). We acknowledge A. Nader from the Institute for Pathology at the Hanusch Krankenhaus in Vienna for supplying the bone tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fratzl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary appendices A, B and C and figures 1-4 (PDF 1987 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlik, H., Roschger, P., Klaushofer, K. et al. From brittle to ductile fracture of bone. Nature Mater 5, 52–55 (2006). https://doi.org/10.1038/nmat1545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing