Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2–ErbB3 receptors

Abstract

Heart septation and valve malformations constitute the most common anatomical birth defects. These structures arise from the endocardial cushions within the atrioventricular canal (AVC) through dynamic interactions between cushion cells and the extracellular matrix (termed cardiac jelly). Transformation of endothelial cells to mesenchymal cells is essential for the proper development of the AVC and subsequent septation and valve formation. Atrioventricular septal defects can result from incomplete endocardial cushion morphogenesis. We show that hyaluronan-deficient AVC explants from Has2−/− embryos, which normally lack mesenchyme formation, are rescued by heregulin treatment, which restores phosphorylation of ErbB2 and ErbB3. These events were blocked using a soluble ErbB3 molecule, as well as with an inhibitor of ErbB2, herstatin. We show further that ErbB3 is activated during hyaluronan treatment of Has2−/− explants. These data provide a link between extracellular matrix-hyaluronan and ErbB receptor activation during development of early heart-valve and septal mesenchyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of ErbB2 within the cushion mesenchyme during AVC morphogenesis.
Figure 2: Cushion mesenchyme is positive for ErbB3.
Figure 3: Receptor profile for ErbB2, ErbB3 and ErbB4 during in vitro AVC morphogenesis.
Figure 4: Deficit in epithelial to mesenchymal transformation (EMT) in ErbB3−/− and ErbB2−/− heart explant cultures.
Figure 5: Rescue of Has2-deficient AVC explants by HRG or HA mediated through ErbB receptor activation.
Figure 6: Full induction of EMT requires HA and activated ErbB2 and ErbB3 during in vitro AVC morphogenesis.

Similar content being viewed by others

References

  1. Ferencz, C. & Boughman, J.A. Congenital heart disease in adolescents and adults. Teratology, genetics, and recurrence risks. Cardiol. Clinics 11, 557–567 (1993).

    Article  CAS  Google Scholar 

  2. Srivastava, D. Genetic assembly of the heart: implications for congenital heart disease. Annu. Rev. Physiol. 63, 451–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Eisenberg, L.M. & Markwald, R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 77, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Camenisch, T.D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walsh, E.C. & Stainier, D.Y. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995); erratum: 378, 753 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, K.F. et al. Requirement for neuregulin receptor ErbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Erickson, S.L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, 4999–5011 (1997).

    CAS  PubMed  Google Scholar 

  10. Hertig, C.M., Kubalak, S.W., Wang, Y. & Chien, K.R. Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J. Biol. Chem. 274, 37362–37369 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bourguignon, L.Y. et al. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J. Biol. Chem. 272, 27913–27918 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Park, P.W., Reizes, O. & Bernfield, M. Cell surface heparan sulfate proteoglycans: Selective regulators of ligand-receptor encounters. J. Biol. Chem. 275, 29923–29926 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin, H.S. Early embryonic vascular development. Cardiovasc. Res. 31, E34–45 (1996).

    Article  PubMed  Google Scholar 

  15. Runyan, R.B. & Markwald, R.R. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95, 108–114 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Camenisch, T.D., Biesterfeldt, J., Brehm-Gibson, T., Bradley, J. & McDonald, J.A. Regulation of cardiac cushion development by hyaluronan. Exp. Clin. Cardiol. 6, 4–10 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Olayioye, M.A., Neve, R.M., Lane, H.A. & Hynes, N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  19. Doherty, J.K., Bond, C., Jardim, A., Adelman, J.P. & Clinton, G.M. The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor. Proc. Natl. Acad. Sci. USA 96, 10869–10874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, H., Akita, R.W., Sliwkowski, M.X. & Maihle, N.J. A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res. 61, 4467–4473 (2001).

    CAS  PubMed  Google Scholar 

  21. Chen, B. et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nature Genet. 24, 296–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B. & Seed, B. CD44 is the principal cell-surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Sherman, L., Sleeman, J., Herrlich, P. & Ponta, H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Cur. Opin. Cell Biol. 6, 726–733 (1994).

    Article  CAS  Google Scholar 

  24. Schmits, R. et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90, 2217–2233 (1997).

    CAS  PubMed  Google Scholar 

  25. Serbulea, M. et al. Hyaluronan activates mitogen-activated protein kinase via Ras-signaling pathway. Inter. J. Oncol. 14, 733–738 (1999).

    CAS  Google Scholar 

  26. Fitzgerald, K.A., Bowie, A.G., Skeffington, B.S. & O'Neill, L.A. Ras, protein kinase C zeta, and I κB kinases 1 and 2 are downstream effectors of CD44 during the activation of NF-κB by hyaluronic acid fragments in T-24 carcinoma cells. J. Immunol. 164, 2053–2063 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lakkis, M.M. & Epstein, J.A. Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125, 4359–4367 (1998).

    CAS  PubMed  Google Scholar 

  28. Anderson, R.H., Webb, S. & Brown, N.A. The mouse with trisomy 16 as a model of human hearts with common atrioventricular junction. Cardiovasc. Res. 39, 155–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Webb, S., Brown, N.A. & Anderson, R.H. Formation of the atrioventricular septal structures in the normal mouse. Circ. Res. 82, 645–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Rubin, J.D. et al. Congenital cardiovascular malformations in the Baltimore-Washington area. Md. Med. J. 34, 1079–1083 (1985).

    CAS  PubMed  Google Scholar 

  31. Markwald, R., Eisenberg, C., Eisenberg, L., Trusk, T. & Sugi, Y. Epithelial-mesenchymal transformations in early avian heart development. Acta Anatomica 156, 173–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15, 2452–2467. abs.html (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinkas-Kramarski, R., Shelly, M., Glathe, S., Ratzkin, B.J. & Yarden, Y. Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J. Biol. Chem. 271, 19029–19032 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. O'Shea, S., Johnson, K., Clark, R., Sliwkowski, M.X. & Erickson, S.L. Effects of in vivo heregulin beta1 treatment in wild-type and ErbB gene- targeted mice depend on receptor levels and pregnancy. Am. J. Pathol. 158, 1871–1880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Erickson for the ErbB2- and ErbB3-targeted mouse lines; G. Lemke for the ErbB4-targeted mouse line; C. Birchmeier for the Heregulin-targeted mouse line; G. Clinton for the Herstatin plasmid19; N. Maihle and H. Lee for purified soluble p85 ErbB3 protein20; D. Lee and N. Luetteke for critical discussions; A.N. Camenisch for inspirational discussions; M. Ruona for medical graphics support; and C. Williams and S. Fleck for manuscript preparation. This study was supported by the PANDA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Camenisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camenisch, T., Schroeder, J., Bradley, J. et al. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2–ErbB3 receptors. Nat Med 8, 850–855 (2002). https://doi.org/10.1038/nm742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing