Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimorphic effects of Notch signaling in bone homeostasis

Abstract

Notch signaling is a key mechanism in the control of embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and, specifically, in bone homeostasis, remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis owing to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by upregulating the genes encoding cyclin D, cyclin E and Sp7 (osterix). The intracellular domain of Notch1 also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all Notch signaling in osteoblasts, generated by deletion of the genes encoding presenilin-1 and presenilin-2 in bone, is associated with late-onset, age-related osteoporosis, which in turn results from increased osteoblast-dependent osteoclastic activity due to decreased osteoprotegerin mRNA expression in these cells. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gain of Notch function in transgenic mice cause osteosclerosis.
Figure 2: Notch regulates key osteoblast transcription factors and cell cycle proteins.
Figure 3: Loss of Notch signaling via presenilin deletion causes osteoporosis.
Figure 4: Loss of Notch signaling through presenilin deletion increases the osteoclastogenic pool.
Figure 5: Model for Notch's dimorphic effects in bone homeostasis.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  2. Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  3. Weinmaster, G. The ins and outs of Notch signaling. Mol. Cell. Neurosci. 9, 91–102 (1997).

    Article  CAS  Google Scholar 

  4. Daudet, N. & Lewis, J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132, 541–551 (2005).

    Article  CAS  Google Scholar 

  5. Brennan, C.A. & Moses, K. Determination of Drosophila photoreceptors: timing is everything. Cell. Mol. Life Sci. 57, 195–214 (2000).

    Article  CAS  Google Scholar 

  6. Bulman, M.P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441 (2000).

    Article  CAS  Google Scholar 

  7. Shen, J. et al. Skeletal and CNS defects in presenilin-1–deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  Google Scholar 

  8. Deregowski, V., Gazzerro, E., Priest, L., Rydziel, S. & Canalis, E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-catenin but not bone morphogenetic protein signaling. J. Biol. Chem. 281, 6203–6210 (2006).

    Article  CAS  Google Scholar 

  9. Sakamoto, K., Chao, W.S., Katsube, K. & Yamaguchi, A. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 302, 281–291 (2005).

    Article  CAS  Google Scholar 

  10. Sciaudone, M., Gazzerro, E., Priest, L., Delany, A.M. & Canalis, E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144, 5631–5639 (2003).

    Article  CAS  Google Scholar 

  11. Tezuka, K. et al. Stimulation of osteoblastic cell differentiation by Notch. J. Bone Miner. Res. 17, 231–239 (2002).

    Article  CAS  Google Scholar 

  12. Zamurovic, N., Cappellen, D., Rohner, D. & Susa, M. Coordinated activation of Notch, Wnt, and transforming growth factor-β signaling pathways in bone morphogenic protein 2–induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J. Biol. Chem. 279, 37704–37715 (2004).

    Article  CAS  Google Scholar 

  13. Nakashima, K. et al. The novel zinc finger–containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  Google Scholar 

  14. Galindo, M. et al. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem. 280, 20274–20285 (2005).

    Article  CAS  Google Scholar 

  15. Pratap, J. et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63, 5357–5362 (2003).

    CAS  PubMed  Google Scholar 

  16. Shen, R. et al. Cyclin D1–cdk4 induce Runx2 ubiquitination and degradation. J. Biol. Chem. 281, 16347–16353 (2006).

    Article  CAS  Google Scholar 

  17. Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    Article  CAS  Google Scholar 

  18. Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    Article  CAS  Google Scholar 

  19. Glass, D.A., II et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  Google Scholar 

  20. Krishnan, V., Bryant, H.U. & Macdougald, O.A. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202–1209 (2006).

    Article  CAS  Google Scholar 

  21. Tu, X. et al. Noncanonical Wnt signaling through G protein–linked PKC-δ activation promotes bone formation. Dev. Cell 12, 113–127 (2007).

    Article  CAS  Google Scholar 

  22. Janssens, K., ten Dijke, P., Janssens, S. & Van Hul, W. Transforming growth factor-β1 to the bone. Endocr. Rev. 26, 743–774 (2005).

    Article  CAS  Google Scholar 

  23. Mezquita-Raya, P. et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos. Int. 16, 1368–1374 (2005).

    Article  Google Scholar 

  24. Fahrleitner-Pammer, A. et al. Osteoprotegerin serum levels in women: correlation with age, bone mass, bone turnover and fracture status. Wien. Klin. Wochenschr. 115, 291–297 (2003).

    Article  CAS  Google Scholar 

  25. Arko, B., Prezelj, J., Kocijancic, A., Komel, R. & Marc, J. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas 51, 270–279 (2005).

    Article  CAS  Google Scholar 

  26. Choi, J.Y. et al. Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif. Tissue Int. 77, 152–159 (2005).

    Article  CAS  Google Scholar 

  27. Hofbauer, L.C. et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140, 4367–4370 (1999).

    Article  CAS  Google Scholar 

  28. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  Google Scholar 

  29. Wang, L.L. Biology of osteogenic sarcoma. Cancer J. 11, 294–305 (2005).

    Article  CAS  Google Scholar 

  30. Boyce, B.F. & Xing, L. Osteoclasts, no longer osteoblast slaves. Nat. Med. 12, 1356–1358 (2006).

    Article  CAS  Google Scholar 

  31. Zhao, C. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 4, 111–121 (2006).

    Article  CAS  Google Scholar 

  32. Zhou, G. et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl. Acad. Sci. USA 103, 19004–19009 (2006).

    Article  CAS  Google Scholar 

  33. Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13, 1025–1036 (1999).

    Article  CAS  Google Scholar 

  34. Segall, H.I., Yoo, E. & Sutton, R.E. Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol. Ther. 8, 118–129 (2003).

    Article  CAS  Google Scholar 

  35. Dai, C., McAninch, R.E. & Sutton, R.E. Identification of synthetic endothelial cell–specific promoters by use of a high-throughput screen. J. Virol. 78, 6209–6221 (2004).

    Article  CAS  Google Scholar 

  36. Sutton, R.E., Wu, H.T., Rigg, R., Bohnlein, E. & Brown, P.O. Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J. Virol. 72, 5781–5788 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xing, L. et al. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J. Bone Miner. Res. 17, 1200–1210 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kadesch (University of Pennsylvania) for Myc-His–tagged N1ICD, GST-NICDΔTAD and GST-NICDΔRA, G. Karsenty (Columbia University) for Col1a1-Cre mice, M.S. Nanes (Emory University) for osterix-luciferase and −1269/91 Osx-p-luc, and L. Donehower (Baylor College of Medicine) for antibody to p53. We thank M. Acar and O. Sirin for technical assistance. This work was supported by US National Institutes of Health grants ES11253 (B.L.), HD22657 (B.L.), DE016990 (B.L.) and AR43510 (B.F.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Lee.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4 and Supplementary Methods (PDF 2718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engin, F., Yao, Z., Yang, T. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14, 299–305 (2008). https://doi.org/10.1038/nm1712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing