Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nuclear receptor co-repressor Nrip1 (RIP140) is essential for female fertility

Abstract

Ovulatory dysfunction is the commonest cause of female infertility. Here we show that the co-repressor nuclear-receptor-interacting protein 1 (Nrip1; encoded by the gene Nrip1) is essential for ovulation. Mice null for this protein are viable, but female mice are infertile because of complete failure of mature follicles to release the oocyte at ovulation. In contrast, luteinization proceeds normally, resulting in a phenotype closely resembling that of luteinized unruptured follicle syndrome, often associated with infertility in women. Therefore, whereas the pre-ovulatory surge of luteinizing hormone induces both ovulation and luteinization, the ability to suppress the action of nuclear receptors is essential for the coordinated control of ovarian function with the essential process of oocyte release dependent on the activity of the transcriptional co-repressor Nrip1 (RIP40).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted inactivation of mouse Nrip1.
Figure 2: RIPKO mice are reduced in size and females are infertile.
Figure 3: Anovulatory phenotype of RIPKO mice.
Figure 4: The endocrine function of RIPKO ovaries is normal.
Figure 5: Expression of Nrip1 in RIPKO, heterozygous and wild-type mice.
Figure 6: mRNA expression of ovarian marker genes in gonadotrophin-treated wild-type and RIPKO mice.

Similar content being viewed by others

References

  1. Brosens, I.A. & Koninckx, P.R. Luteinized unruptured follicle (LUF) syndrome and endometriosis. Fertil. Steril. 34, 179–181 (1980).

    Article  CAS  Google Scholar 

  2. Donnez, J & Thomas, K. Incidence of the luteinized unruptured follicle syndrome in fertile women and women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 14, 187–190 (1982).

    Article  CAS  Google Scholar 

  3. Koninckx, P.R., De Moor, P. & Brosens, I.A. Diagnosis of the luteinized unruptured follicle syndrome by steroid hormone assays on peritoneal fluid. Br. J. Obstet. Gynaecol. 87, 929–934 (1980).

    Article  CAS  Google Scholar 

  4. Coetsier, T. & Dhont, M. Complete and partial luteinized unruptured follicle syndrome after ovarian stimulation with clomiphene citrate/human menopausal gonadotrophin/human chorionic gonadotrophin. Hum. Reprod. 11, 583–587 (1996).

    Article  CAS  Google Scholar 

  5. Lubahn, D.B. et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 90, 11162–11166 (1993).

    Article  CAS  Google Scholar 

  6. Krege, J.H. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc. Natl. Acad. Sci. USA 95, 15677–15682 (1998).

    Article  CAS  Google Scholar 

  7. Lydon, J.P. et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9, 2266–2278 (1995).

    Article  CAS  Google Scholar 

  8. McKenna, N.J., Lanz, R.B. & O'Malley, B.W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20, 321–344 (1999).

    CAS  PubMed  Google Scholar 

  9. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  10. Xu, J. et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA 97, 6379–6384 (2000).

    Article  CAS  Google Scholar 

  11. Xu, J. et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279, 1922–1925 (1998).

    Article  CAS  Google Scholar 

  12. Cavailles, V. et al. Nuclear factor RIP140 modulates transcriptional activity by the oestrogen receptor. EMBO J. 14, 3741–3751 (1995).

    Article  CAS  Google Scholar 

  13. Lee, C-H., Chinpaisal, C. & Wei, L-N. Cloning and characterisation of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Mol. Cell. Biol. 18, 6745–6755 (1998).

    Article  CAS  Google Scholar 

  14. Thenot, S., Charpin, M., Bonnet, S. & Cavailles, V. Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol. Cell. Endocrinol. 156, 85–93 (1999).

    Article  CAS  Google Scholar 

  15. Treuter, E., Albrektsen, T., Johansson, L., Leers, J. & Gustafsson, J.-A. A regulatory role for RIP140 in nuclear receptor activation. Mol. Endo. 12, 841–881 (1998).

    Article  Google Scholar 

  16. Subramaniam, N., Treuter, E. & Okret, S. Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J. Biol. Chem. 274, 18121–18127 (1999).

    Article  CAS  Google Scholar 

  17. Lee, C.H. & Wei, L.N. Characterization of receptor-interacting protein 140 in retinoid receptor activities. J. Biol. Chem. 274, 31320–31326 (1999).

    Article  CAS  Google Scholar 

  18. Heery, D.M., Kalkhoven, E., Hoare, S. & Parker, M.G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  Google Scholar 

  19. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  CAS  Google Scholar 

  20. Brzozowski, A.M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  CAS  Google Scholar 

  21. Shiau, A.K. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  22. Pike, A.C. et al. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 18, 4608–4618 (1999)

    Article  CAS  Google Scholar 

  23. Mountford, P. et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA 91, 4303–4307 (1994).

    Article  CAS  Google Scholar 

  24. Byers, M., Kuiper, G.G.J.M., Gustafsson, J.-A. & Park-Sarge, O.-K. Estrogen receptor-β mRNA expression in rat ovary: down-regulation by gonadotropins. Mol. Endocrinol. 11, 172–182 (1997).

    CAS  PubMed  Google Scholar 

  25. Sicinski, P. et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–74 (1996).

    Article  CAS  Google Scholar 

  26. Peng, X-R., Hsueh, A.J.W., Lapolt, P.S., Bjersing, L. & Ny, T. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129, 3200–3207 (1991).

    Article  CAS  Google Scholar 

  27. Nokelainen, P., Peltoketo, H., Mustonen, M. & Vihko, P. Expression of mouse 17β-hydroxysteroid dehydrogenase/17-ketoreductase type 7 in the ovary, uterus and placenta: localisation from implantation to late pregnancy. Endocrinology 141, 772–778 (2000).

    Article  CAS  Google Scholar 

  28. Wiersma, A. et al. Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents. J. Clin. Invest. 102, 532–537 (1998)

    Article  CAS  Google Scholar 

  29. Elvin, J.A. & Matzuk, M.M. Mouse models of ovarian failure. Rev. Reprod. 3, 183–195 (1998).

    Article  CAS  Google Scholar 

  30. Dong, J. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).

    Article  CAS  Google Scholar 

  31. Pall, M., et al. The transcription factor C/EBP-β and its role in ovarian function; evidence for direct involvement in the ovulatory process. EMBO J. 16, 5273–5279 (1997).

    Article  CAS  Google Scholar 

  32. Sterneck, E., Tessarollo, L. & Johnson, P.F. An essential role for C/EBPβ in female reproduction. Genes Dev. 11, 2153–2162 (1997).

    Article  CAS  Google Scholar 

  33. Ormandy, C.J. et al. Null mutation in the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    Article  CAS  Google Scholar 

  34. Couse, J.F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocrine Rev. 20, 358–417 (1999).

    Article  CAS  Google Scholar 

  35. Rajendra Kumar, T., Wang, Y., Lu, N. & Matzuk, M. M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature Genet. 15, 201–204 (1997)

    Article  Google Scholar 

  36. Dierich, A. et al. Impaired follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. USA 95, 13612–13617 (1998).

    Article  CAS  Google Scholar 

  37. Abel, M.H. et al. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141, 1795–1803 (2000).

    Article  CAS  Google Scholar 

  38. Lee, S.L. et al. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219–1221 (1996).

    Article  CAS  Google Scholar 

  39. Robker, R.L., et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc. Natl. Acad. Sci. USA 97, 4689–4694 (2000).

    Article  CAS  Google Scholar 

  40. Shindo, T. et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J. Clin. Invest. 105, 1345–1352 (2000).

    Article  CAS  Google Scholar 

  41. Risma, K.A., Hirshfield, A.N. & Nilson, J.H. Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology. Endocrinology 138, 3450–3457 (1997).

    Article  Google Scholar 

  42. Sharma, S.C., Clemens, J.W., Pisarska, M.D. & Richards, J.S. Expression and function of estrogen receptor subtypes in granulosa cells: regulation by estradiol and forskolin. Endocrinology 140, 4320–4334 (1999).

    Article  CAS  Google Scholar 

  43. Groet, J. et al. Bacterial contig map of the 21q11 region associated with Alzheimer's disease and abnormal myelopoiesis in Down syndrome. Genome Res. 8, 385–398 (1998).

    Article  CAS  Google Scholar 

  44. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. in Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  45. Poulsom R., Longcroft J. M., Jeffrey R.E., Rogers L. & Steel J.H. A robust method for isotopic riboprobe in situ hybridisation to localise mRNA's in routine pathology specimens. Eur. J. Histochem. 42, 121–132 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Hagger, T. Crafton and the staff in Biological Resources; V. Pocock for analysis of ovarian sections; and R. Poulsom, R. Jeffrey and J. Longcroft for in situ hybridization studies, with G. Elia and the staff of the histopathology unit. Oligonucleotides were synthesized by I. Goldsmith. We thank R. Winston, D. Shima and H. Macneil, as well as members of the Molecular Endocrinology Laboratory, for advice and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R., Leonardsson, G., Rosewell, I. et al. The nuclear receptor co-repressor Nrip1 (RIP140) is essential for female fertility. Nat Med 6, 1368–1374 (2000). https://doi.org/10.1038/82183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing