Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 induction of CD40 on endothelial cells promotes the outgrowth of AIDS-associated B-cell lymphomas

Abstract

Human immunodeficiency virus (HIV)-I infection is associated with the development of aggressive extranodal B-cell non-Hodgkin's lymphomas. Using microvascular endothelial cell (MVEC)-enriched bone marrow stromal cultures, HIV infection of stromal MVECs from lymphoma patients induced the outgrowth of malignant B cells. MVECs were the only HIV-infected cells in the stroma, and purified brain MVECs also induced a phenotype supportive of neoplastic B-cell attachment and proliferation. HIV infection of MVECs stimulated surface expression of CD40 and allowed preferential induction of the vascular cell adhesion molecule VCAM-1 after CD40 triggering. B-lymphoma cells expressed the CD40 ligand (CD40L), and blocking of CD40–CD40L interactions between HIV-infected MVECs and B-lymphoma cells inhibited B-cell attachment and proliferation. These observations suggest that HIV promotes B-lymphoma cell growth through facilitating attachment of lymphoma cells to HIV-infected MVECs and represent a novel mechanism through which viruses may induce malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaidano, G. & Dalla-Favera, A. Molecular pathogenesis of AIDS-related lym-phomas. Adv. Cancer Research 67, 113–153 (1995).

    Article  CAS  Google Scholar 

  2. Beral, V., Peterman, T., Berkelman, R. & Jafe, H. AIDS-associated non-Hodgkin lymphoma. Lancet 337, 805–809 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Shiramizu, B., Herndier, B., Meeker, T. & McGrath, M. Molecular and immunophe-notypic characterization of AIDS-associated, Epstein-Barr virus-negative, polyclonal lymphoma. J. Clin. Oncol. 10, 383–389 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Delecluse, H. et al. Variable morphology of human immunodeficiency virus-associated lymphomas with c-myc rearrangements. Blood 82, 552–563 (1993).

    CAS  PubMed  Google Scholar 

  5. Astrin, S.M., Schattner, E., Laurence, J., Lebman, R.I. & Rodriguez-Alfageme, C. Does HIV infection of B lymphocytes initiate AIDS lymphoma? Detection by PCR of viral sequences in lymphoma tissue. Cur. Top. Microbiol. Immunol. 182, 399–407 (1992).

    CAS  Google Scholar 

  6. Prevot, S., Raphael, M., Fournier, J.G. & Diebold, J. Detection by in situ hybridization of HIV and c-myc RNA in tumor cells of AIDS-related B-cell lymphomas. Histopathology 22, 151–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Groopman, J.E. et al. Pathogenesis of B cell lymphoma in a patient with AIDS. Blood 67, 612–615 (1986).

    CAS  PubMed  Google Scholar 

  8. Pellici, G. et al. Multiple monoclonal B-cell expansions and c-myc oncogene re arrangements in acquired immune deficiency syndrome related lymphoproliferative disorders: Implications for lymphomagenesis. J. Exp. Med. 164, 2049–2076 (1986).

    Article  Google Scholar 

  9. Subar, M., Neri, A., Inghirami, C., Knowles, D.M. & Dalla-Favera, R. Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS-associated lymphoma. Blood 72, 667–671 (1988).

    CAS  PubMed  Google Scholar 

  10. Caidano, G. et al. In vitro establishment of AIDS-related lymphoma Cell lines: Phenotypic characterization, oncogene and tumour suppressor gene lesions, and heterogeneity in Epstein-Barr virus infection. Leukemia 7, 1621 1629 (1993).

  11. Jacobsen, K. & Osmond, D.G. Microenvironmental organization and stromal cell associations of B lymphocyte precursor cells in mouse bone marrow. Eur. J. Immunol. 20, 2395–2398 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Wolf, M.L., Buckley, J.A., Goldfarb, A., Law, C.L. & LeBien, T.W. Development of a bone marrow culture for maintenance and growth of normal human B-cell precursors. J. Immunol. 147, 3324–3330 (1991).

    CAS  PubMed  Google Scholar 

  13. Larvis, L.J. & LeBien, T.W. Stimulation of human bone marrow stromal cell tyrosine kinases and IL-6 production by contact with B lymphocytes. J. Immunol. 155, 2359–2368 (1995).

    Google Scholar 

  14. Campana, D. et al. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood 81, 1025–1031 (1993).

    CAS  PubMed  Google Scholar 

  15. Freedman, A.S. Expression and function of adhesion receptors on normal B-cells and B-cell non-Hodgkin's lymphomas. Semin. Hematology 30, 318–328 (1993).

    CAS  Google Scholar 

  16. Manabe, A. et al. Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood 83, 758–766 (1994).

    CAS  PubMed  Google Scholar 

  17. Panayiotidis, P., Jones, D., Ganeshaguru, K., Foreni, L. & Hoffbrand, A.V. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br. J. Haematol. 92, 97–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Dittel, B.N., McCarthy, J., Wayner, E.A. & LeBien, T.W. Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular cell adhesion molecule-1 (VCAM-1). Blood 81, 2272–2282 (1993).

    CAS  PubMed  Google Scholar 

  19. Moses, A.V. et al. HIV infection of bone marrow endothelium reduces induction of stromal hematopoietic growth factors. Blood 87, 919–925 (1996).

    CAS  PubMed  Google Scholar 

  20. Kellog, D.E. & Kwok, S. Detection of human immunodeficiency virus. in PCR Protocols: A Guide to Methods and Applications. (eds. Innes, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J.) 337–347 (Academic Press, New York, 1990).

    Google Scholar 

  21. Telenti, A., Marshall, W.F. & Smith, T.F. Detection of Epstein-Barr virus by poly-merase chain reaction. J. Clin. Microbiol. 28, 2187–2190 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, P.S. & Chang, Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N. Engl. J. Med. 332, 1181–1185 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Moses, A.V., Bloom, F.E., Pauza, C.D. & Nelson, J.A. Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylce-ramide-independent mechanism. Proc. Notl. Acad. Sci. USA 90, 10474–10478 (1993).

    Article  CAS  Google Scholar 

  24. Moses, A.V. et al. Sequences regulating tropism of HIV-1 for brain capillary endothelial cells map to a unique region on the viral genome. J. Virol. 70, 3401–3406 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryan, D.H., Nucci, B.L., Abbound, C.N. & Winslow, J.M. Cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B-Cell precursors to cultured bone marrow adherent Cells. J. Clin. Invest. 88, 995–1004 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freedman, A.S. et al. Follicular non-Hodgkin's lymphoma cell adhesion to normal germinal centers and neoplastic follicles involves very late antigen-4 and vascular cell adhesion molecule-1. Blood 79, 206–212 (1992).

    CAS  PubMed  Google Scholar 

  27. Simmonds, P.J. et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80, 388–395 (1992).

    Google Scholar 

  28. Tang, J., Scott, G. & Ryan, D.H. Subpopulations of bone marrow fibroblasts support VLA-4-mediated migration of B-cell precursors. Blood 82, 3415–3423 (1993).

    CAS  PubMed  Google Scholar 

  29. Moses, A.V., Stenglein, S.C. & Nelson, J.A. HIV infection of the brain microvascula-ture and its contribution to the AIDS dementia complex. J. NeuroAIDS 1, 85–99 (1996).

    CAS  PubMed  Google Scholar 

  30. Wong, D. & Dorovtni-Zis, K. Expression of vascular cell adhesion molecuie-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc. Res. 49, 325–339 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Hollenbaugh, D. et al. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 182, 33–4O (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Karmann, K., Hughes, C.C.W., Schechner, J., Fanslow, W.C. & Pober, J.S. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc. Notl. Acad. Sci. USA 92, 4342–4346 (1995).

    Article  CAS  Google Scholar 

  33. Yellin, M.J. et al. Functional interactions of T cells with endothelial cells: The role of CD40L-CD40-mediated signals. J. Exp. Med. 182, 1857–1864 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Yellin, M.J. et al. Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation. J. Leukocyte Biol. 58, 209–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Graf, D., Korthauer, U., Mages, H.W., Senger, G. & Kroczek, R.A. Cloning of TRAP, a ligand for CD40 on human T cells. Eur. J. Immunol. 22, 3191- (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Pinchuk, L.M. et al. Functional CD40 ligand expressed by human blood dendritic cells is up-regulated by CD40 ligation. J. Immunol. 157, 4363–4370 (1996).

    CAS  PubMed  Google Scholar 

  37. Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, smooth muscle cells, and macrophages: Implications for CD40-CD40L signalling in atherosclerosis. Proc. Notl. Acad. Sci. USA 94, 1931–1936 (1997).

    Article  CAS  Google Scholar 

  38. Crammer, A.C. et al. The CD40 Ligand expressed by human B cells costimulates B cell responses. J. Immunol. 154, 4996–5010 (1995).

    Google Scholar 

  39. Castle, B.E. et al. Regulation of expression of the ligand for CD40 on T helper lymphocytes. J. Immunol. 151, 1777–1788 (1993).

    CAS  PubMed  Google Scholar 

  40. Chang, H-K., Gallo, R.C. & Ensoli, B., Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 tat protein. J. Biomed. Sci. 2, 189–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Harris, M. From negative factor to a critical role in viral pathogenesis: The changing fortunes of nef. J. Cen. Virol. 77, 2379–2392 (1996).

    Article  CAS  Google Scholar 

  42. Cohen, E.A. et al. Identification of HIV-1 vpr product and function. J. Aquired Immune Defic. Syndr. 3, 11–18 (1990).

    CAS  Google Scholar 

  43. Wang, F. et al. Epstein-Barr virus latent membrane protein (LMP 1) and nuclear proteins 2 and 3c are effectors of phenotypic changes in B lymphocytes: EBNA 2 and LMP 1 cooperatively induce CD23. J. Virol. 64, 2309–2318 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pammer, J. et al. CD40 antigen is expressed by endothelial cells and tumor cells in Kaposi's sarcoma. Am. J. Pathol. 148, 1387–1396 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Broshoff, C. et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature Med. 1, 1274–1278 (1995).

    Article  Google Scholar 

  46. Gruss, H.-J. & Dower, S.K., Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 85, 3378–3404 (1995).

    CAS  PubMed  Google Scholar 

  47. Wiley, C.A., Schrier, R.D., Nelson, J.A., Lampert, P.W. & Oldstone, M.B.A. Cellular localization of human immunodeficiency virus infection within the brains of acquired immunodeficiency patients. Proc. Notl. Acad. Sci. USA 83, 7089–7093 (1986).

    Article  CAS  Google Scholar 

  48. Steffan, A-M. et al. Primary cultures of endothelial cells from the human liver sinusoid are permissive for human immunodeficiency virus type 1. Proc. Notl. Acad. Sci. USA 89, 1582–1586 (1992).

    Article  CAS  Google Scholar 

  49. Green, D.F., Resnick, L. & Bourgoignie, J.J. HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int. 41, 956–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Rettig, M.B. et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 276, 1851–1854 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gallo, R.C. et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224, 500–503 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Cann, A.J. et al. Human immunodeficiency virus type 1 T-cell tropism is determined by events prior to provirus formation. J. Virol. 64, 4735–4742 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Levy, J.A. & Shimabukuro, J. Recovery of AIDS-associated retroviruses from patients with AIDS or AIDS-related conditions and from clinically healthy individuals. J. Infect. Dis. 152, 734–738 (1995).

    Article  Google Scholar 

  54. Koyanagi, S. et al. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236, 819–836 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Cheng-Mayer, C., Weiss, C., Seto, D. & Levy, J.A. Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc. Notl. Acad. Sci. USA 86, 8575–8579 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moses, A., Williams, S., Strussenberg, J. et al. HIV-1 induction of CD40 on endothelial cells promotes the outgrowth of AIDS-associated B-cell lymphomas. Nat Med 3, 1242–1249 (1997). https://doi.org/10.1038/nm1197-1242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing