Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: Developing the first mouse model of mitochondrial DNA disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parent ES cells (left panel) and CAPr ES cells (right panel) stained for cytochrome oxidase activity12.
Figure 2: Percent CAPr mtDNA in tissues from chimeric mice.
Figure 3: Generation of CAPr ES cells.

References

  1. Graham, B.H. et al. A mouse model for a mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genet. 16, 226–234 (1997).

    Article  CAS  Google Scholar 

  2. Melov, S et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature Genet. 18, 159–163 (1998).

    Article  CAS  Google Scholar 

  3. Larsson, N. et al. Mitochondrial Transcription Factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998).

    Article  CAS  Google Scholar 

  4. King, M.P. & Attardi, G. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    Article  CAS  Google Scholar 

  5. Laipis, P. Construction of heteroplasmic mice containing two mitochondrial DNA genotypes by micromanipulation of single-cell embryos. Methods Enzymol. 264, 345–357 (1996).

    Article  CAS  Google Scholar 

  6. Jenuth, J., Peterson, A., Fu, K. & Shoubridge, E. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nature Genet. 14, 146–151 (1996).

    Article  CAS  Google Scholar 

  7. Meirelles, F. & Smith, L. Mitochondrial genotype in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145, 445–451 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinkert, C.A., Irwin, M.H., Johnson, L.W. & Moffatt, R.J. Mitochondria transfer into mouse ova by microinjection. Transgenic Res. 6, 379–383 (1997).

    Article  CAS  Google Scholar 

  9. White, S. Molecular Mechanisms of Mitochondrial Disorders. Thesis, Univ. Melbourne (1999).

    Google Scholar 

  10. Kearsey, S. & Craig, I. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290, 607–608 (1981).

    Article  CAS  Google Scholar 

  11. Howell, N. & Nalty, M.S. Mitochondrial chloramphenicol-resistant mutants can have deficiencies in energy metabolism. Somat. Cell Mol. Genet. 14, 185–193 (1988).

    Article  CAS  Google Scholar 

  12. Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L. & Hanker, J.S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968).

    Article  CAS  Google Scholar 

  13. Ferris, S.D., Sage, R.D. & Wilson, A.C. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163–165 (1982).

    Article  CAS  Google Scholar 

  14. Prezant, T.R. et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nature Genet. 4, 289–294 (1993).

    Article  CAS  Google Scholar 

  15. Fischel-Ghodsian, N., Prezant, T.R., Bu, X. & Oztas, S. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am. J. Otolaryngol. 14, 399–403 (1993).

    Article  CAS  Google Scholar 

  16. Guan, M.X., Fischel-Ghodsian, N. & Attardi, G. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum. Mol. Genet. 5, 963–971 (1996).

    Article  CAS  Google Scholar 

  17. King, M.P., Koga, Y., Davidson, M. & Schon, E.A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol. Cell. Biol. 12, 480–490 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Craig for providing the CAPr cell line; R. Gardner, F. Brook and A. Koss for supplying female ES cell lines; M. King, I. Holt, R. Capaldi, H. Jacobs and D. Kwiatkowski for comments on the manuscript; M.F.J. Cortina Borja for statistical advice; the Oxford University BMSU for help with microinjection techniques; and R.E. Moxon for support. This work was supported by the Wellcome Trust. J.P. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Poulton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchington, D., Barlow, D. & Poulton, J. Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: Developing the first mouse model of mitochondrial DNA disease. Nat Med 5, 957–960 (1999). https://doi.org/10.1038/11403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/11403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing