Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of Akt kinase activation is important for immunosuppression induced by measles virus

Abstract

Surface-contact–mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2–dependent activation of JAK/STAT pathways, activation of Akt kinase was impaired after MV contact both in vitro and in vivo. MV interference with Akt activation was important for immunosuppression, as expression of a catalytically active Akt prevented negative signaling by the MV glycoproteins. Thus, we show here that MV exploits a novel strategy to interfere with T-cell activation during immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UV-MV abolish IL-2–stimulated proliferation of human PBL and Kit-225 cells.
Figure 2: IL-2–stimulated activation of JAK/STAT pathways in UV-MV–treated PBT cells.
Figure 3: UV-MV inhibits IL-2–dependent Akt activation in T cells.
Figure 4: UV-MV disrupts IL-2–dependent Akt-signaling but not BAD phosphorylation.
Figure 5: Expression of myr-Akt efficiently reduces MV-induced immunosuppression in vitro.

Similar content being viewed by others

References

  1. Borrow, P. & Oldstone, M.B.A. Measles virus—mononuclear cell interactions. in Measles virus. (eds. Billeter, M. & ter Meulen, V.) 85–100 (Springer, Berlin, 1995).

    Chapter  Google Scholar 

  2. Griffin, D.E. Immune responses during measles virus infection. in Measles virus. (eds. Billeter, M. & ter Meulen, V.) 117–134 (Springer, Berlin, 1995).

    Chapter  Google Scholar 

  3. Schneider-Schaulies, S. & ter Meulen, V. Pathogenic aspects of measles virus infection. Arch. Virol. Supp. 15, 139–158 (1999).

    CAS  Google Scholar 

  4. Schlender, J. et al. Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc. Natl. Acad. Sci. USA 93, 13194–13199 (1996).

    Article  CAS  Google Scholar 

  5. Niewiesk, S. et al. Measles virus induced immunosuppression in the cotton rat (sigmodon hispidus) model depends on viral glycoproteins. J. Virol. 71, 7214–7219 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Engelking, O., Fedorov, L., Lilischkies, R., ter Meulen, V. & Schneider-Schaulies, S. Measles virus induced immunosuppression is associated with deregulation of cell cycle control proteins. J. Gen. Virol. 80, 1599–1608 (1999).

    Article  CAS  Google Scholar 

  7. Weidmann, A. et al. The role of F protein proteolytic processing for the induction of measles virus induced immunosuppression. J. Virol. 74, 1985–1993 (2000).

    Article  CAS  Google Scholar 

  8. Weidmann, A. et al. Measles virus induced immunosuppression in vitro is independent of complex glycosylation of the viral glycoproteins and of hemifusion. J. Virol. 74, 7548–7553 (2000).

    Article  CAS  Google Scholar 

  9. Schnorr, J.J. et al. Cell cycle arrest rather than apoptosis is associated with measles virus induced immunosuppression in vitro. J. Gen. Virol. 78, 3217–3226 (1997).

    Article  CAS  Google Scholar 

  10. Niewiesk, S. et al. Measles virus induced immunosuppression in cotton rats is associated with a cell cycle retardation in uninfected lymphocytes. J. Gen. Virol. 80, 2023–2029 (1999).

    Article  CAS  Google Scholar 

  11. Smith, K.A. Interleukin-2: Inception, impact and implications. Science 240, 1169–1176 (1988).

    Article  CAS  Google Scholar 

  12. Nelson, B.H., Lord, J.D. & Greenberg, P.D. Cytoplasmic domains of the IL-2Rβ and γ chain cytoplasmic domain are required for signaling. Nature 369, 333–337 (1994).

    Article  CAS  Google Scholar 

  13. Migone, T.S. et al. Functional cooperation of the IL-2Rβ chain and Jak1 in PI3K recruitment and phosphorylation. Mol. Cell. Biol. 18, 6416–6422 (1998).

    Article  CAS  Google Scholar 

  14. Lord, J.D., McIntosh, B.C., Greenberg, P.D. & Nelson, B.H. The IL-2R promotes proliferation, bcl-2 and bcl-x induction but not cell viability through the adaptor molecule Shc. J. Immunol. 161, 4627–4633 (1998).

    CAS  PubMed  Google Scholar 

  15. Reif, K.B., Burgering, B.M.T. & Cantrell, D.A. Phosphatidylinositol-3 kinase links the interleukin-2 receptor to protein kinase B and p70S6 kinase. J. Biol. Chem. 272, 14426–14438 (1997).

    Article  CAS  Google Scholar 

  16. Ahmed, N.N., Grimes, H.L., Bellacosa A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 3627–3632 (1997).

    Article  CAS  Google Scholar 

  17. Chan, T.O., Rittenhouse, S.E. & Tsichlis, P.N. Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Ann. Rev. Biochem. 68, 965–1014 (1999).

    Article  CAS  Google Scholar 

  18. Kane, L.P., Shapiro, V., Stokoe, D. & Weiss, A. Induction of NFκB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    Article  CAS  Google Scholar 

  19. Brennan, P. et al. PI3K couples the interleukin-2 receptor to the cell cycle control machinery. Immunity 7, 679–689 (1997).

    Article  CAS  Google Scholar 

  20. Brennan, P., Babbage, J.W., Thomas, R. & Cantrell, D. p70s6K integrates phosphoinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol. Cell. Biol. 19, 4729–4738 (1999).

    Article  CAS  Google Scholar 

  21. Niewiesk, S., Götzelmann, M. & ter Meulen, V. Selective suppression of T lymphocyte responses in experimental measles infection. Proc. Natl. Acad. Sci. USA 97, 4251–4255 (2000).

    Article  CAS  Google Scholar 

  22. Van Dooren, S. et al. Evidence for a post-columbian introduction of human T cell lymphotropic virus in Latin America. J. Gen. Virol. 79, 2695–2708 (1998)

    Article  CAS  Google Scholar 

  23. Grassmann, R. et al. Role of human T cell leukemia virus type 1 X region proteins in immortalisation of primary human lymphocytes in culture. J. Virol. 66, 4570–4575 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Naniche, D., Reed, S.I. & Oldstone, M.B.A. Cell cycle arrest during measles virus infection: a G0 like block leads to suppression of retinoblastoma protein expression. J. Virol. 73, 1894–1901 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rusterholz, C., Henrioud, P.C. & Nabholz, M. IL-2 regulates the accessibility of the IL-2 responsive element in the IL-2 receptor α gene to transcription factors. Mol. Cell. Biol. 19, 2681–2689 (1999).

    Article  CAS  Google Scholar 

  26. Bell, A.F., Burns, J.B. & Fujinami, R.S. Measles virus infection of human T cells modulates cytokine generation and IL-2 receptor α chain expression. Virology 232, 241–247 (1997).

    Article  CAS  Google Scholar 

  27. Moriggl, R. et al. Stat5 is required for IL-2 induced cell cycle progression of peripheral T cells. Immunity 10, 249–259 (1999).

    Article  CAS  Google Scholar 

  28. Diehl, A., Cheng, M., Roussell, M.F. & Sherr, C.J. Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localisation. Genes Dev. 12, 3499–3511 (1998).

    Article  CAS  Google Scholar 

  29. Muise-Helmerincks, R.C. et al. Cyclin D expression is controlled posttrancriptionally via a phosphatidylinositol 3-kinase/Akt dependent pathway. J. Biol. Chem. 273, 29864–29872 (1998).

    Article  Google Scholar 

  30. Sun, H. et al. PTEN modulates cell cycle progression and cell survival by regulating phosphoinositol 3,4,5-triphosphate and Akt/PKB signaling pathway. Proc. Natl. Acad. Sci. USA 96, 6199–6204 (1999).

    Article  CAS  Google Scholar 

  31. Delcommenne, M. et al. Phosphoinositide-3-OH kinase dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95, 11211–11216 (1998).

    Article  CAS  Google Scholar 

  32. Persad, S. et al. Inhibition of integrin-linked kinase (ILK) suppresses activation of PKB/Akt and induces cell cycle arrest and apoptosis of PTEN mutant prostate cancer cells. Proc. Natl. Acad. Sci. USA 97, 3207–3212 (2000).

    Article  CAS  Google Scholar 

  33. Ramaswamy, S. et al. Regulation of G1 progression by the PTEN tumor associated protein is linked to inhibition of the PI3K/Akt pathway. Proc. Natl. Acad. Sci. USA 96, 2110–2115 (1999).

    Article  CAS  Google Scholar 

  34. Cantley, L.C. & Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3 kinase/Akt pathway. Proc. Natl. Acad. Sci. 96, 4240–4245 (1999).

    Article  CAS  Google Scholar 

  35. Jones, R.G. et al. Protein kinase B regulates T lymphocytes survival, nuclear factor κB activation and Bcl-XL levels in vivo. J. Exp. Med. 191, 1721–1733 (2000).

    Article  CAS  Google Scholar 

  36. Hinton, H. & Welham, M.J. Cytokine-induced protein kinase B activation and Bad phosphorylation do not correlate with cell survival of hematopoetic cells. J. Immunol. 162, 7002–7009 (1999).

    CAS  PubMed  Google Scholar 

  37. Meili, R., Cron, P., Hemmings, P. & Ballmer-Hofer, K. Protein kinase B/Akt is activated by polyomavirus middle T antigen via a PI3K dependent mechanism. Oncogene 19, 903–907 (1998).

    Article  Google Scholar 

  38. Borgatti, P. et al. Extracellular HIV-1 Tat protein activates PI3K and Akt kinase in CD4+ T lymphoblastoid Jurkat cells. Eur. J. Immunol. 27, 2805–2811 (1997).

    Article  CAS  Google Scholar 

  39. Dörig, R.E., Marcil, A., Chopra, A. & Richardson, C. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993)

    Article  Google Scholar 

  40. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spielhofer, P. et al. Chimeric measles viruses expressing a foreign envelope gene. J. Virol. 72, 2150–2159 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Andjelkovic, M. et al. Role of translocation in the activation of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    Article  CAS  Google Scholar 

  43. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T-cell-specific expression in transgenic mice. J. Immunol. Meth. 185, 133–140 (1995).

    Article  CAS  Google Scholar 

  44. Bright, J.J., Kerr, L.D. & Sriram, S. TGF-β inhibits IL-2 induced tyrosine phosphorylation and activation of JAK1 and STAT5 in T lymphocytes. J. Immunol. 158,175–183 (1997).

    Google Scholar 

  45. Avots, A. et al. GABP factors bind to a distal interleukin 2 (IL-2) enhancer and contribute to c-Raf-mediated increase in IL-2 induction. Mol. Cell. Biol. 17, 4381–4389 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Schneider-Schaulies, A. Weidmann, I. Klagge and E. Serfling for helpful discussions; R. Grassmann for providing C91PL, JuanaW and HTLV-I Tax-transformed TAXI-1 cells; D. Cantrell for providing Kit-225 cells; and C. Rüth for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft and the Bundesministerium Bildung and Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Schneider-Schaulies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avota, E., Avots, A., Niewiesk, S. et al. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7, 725–731 (2001). https://doi.org/10.1038/89106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing