Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Transdermal monitoring of glucose and other analytes using ultrasound

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrasound-enhanced skin permeability.
Figure 2: Glucose extraction and correlation in rats.
Figure 3: Glucose extraction and correlation in humans.
Figure 4: Current protocols and product concept vision.

References

  1. Roe, J.N. & Smaller, B.R. Bloodless glucose measurements . Crit. Rev. Ther. Drug Carrier Syst. 15, 199–241 (1998).

    CAS  PubMed  Google Scholar 

  2. Csoregi, E., Schmidke, D. & Heller, A. Design and optimization of a selective subcutaneously implantable glucose electrode based on ‘wired’ glucose oxidase . Anal. Chem. 67, 1240– 1244 (1995).

    Article  CAS  Google Scholar 

  3. Johnson, K. et al. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors Bioelectronics 7, 709–714 (1992).

    Article  CAS  Google Scholar 

  4. Mastrototaro, J. Clinical evaluation of a continuous subcutaneous glucose monitoring system (NASA/JDF technology workshop abstracts on non/minimally invasive measurement of physiological analytes, Washington, DC, 1998).

  5. Klonoff, D. Non-invasive blood glucose monitoring. Diabetes Care 20, 433–437 (1997).

    Article  CAS  Google Scholar 

  6. Arnowitz, J. TD glucose patch. (NASA/JDF technology workshop abstracts on non/minimally invasive measurement of physiological analytes, Washington, DC, 1998).

  7. Tamada, J., Bohannon, N. & Potts, R. Measurement of glucose in diabetic subjects using noninvasive transdermal extraction. Nature Med. 1, 1198 –1201 (1995).

    Article  CAS  Google Scholar 

  8. Rao, G., Glikfeld, P. & Guy, R. Reverse iontophoresis: Noninvasive glucose monitoring in vivo in humans. Pharm. Res. 12, 1869 –1873 (1995).

    Article  CAS  Google Scholar 

  9. Mitragotri, S., Blankschtein, D. & Langer, R. Ultrasound-mediated transdermal protein delivery. Science 269, 850–853 ( 1995).

    Article  CAS  Google Scholar 

  10. Kost, J. & Langer, R. in Topical Drug Bioavailability, Bioequivalence, and Penetration (Shah, V.P. & Maibach, H.I., eds.) 91–103 (Plennum, New York, 1993).

    Book  Google Scholar 

  11. Tachibana, K. Transdermal delivery of insulin to Alloxan-diabetic rabbits by ultrasound exposure. Pharm. Res. 9, 952– 954 (1992).

    Article  CAS  Google Scholar 

  12. Eppstein, J., Eppstein, D., Kost, J. & Langer, R. Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers (US Patent number US5458140, 1995).

  13. Clarke, W.L., Cox, D.C., Conder-Frederick, W.C. & Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose . Diabetes Care 10, 622– 628 (1987).

    Article  CAS  Google Scholar 

  14. Gutman, S. Review criteria for assessment of portable invasive glucose monitoring in vitro diagnostic devices which use glucose oxidase, dehydrogenase, or hexokinase methodology. (FDA Document, FDA, Rockville, Maryland, 21 January 1998).

  15. Kurnik, R.T., Berner, B., Tamada, J. & Potts, R.O. Design and simulation of reverse iontophoretic glucose monitoring device. J. Electrochem. Soc. 145, 4119–4125 ( 1998).

    Article  CAS  Google Scholar 

  16. Liu, J., Lewis, T.N. & Prausnitz, M.R. Non-invasive assessment and control of ultrasound-induced membrane permeabilization. Pharm. Res. 15, 918–923 (1998).

    Article  CAS  Google Scholar 

  17. Wayforth, H.B. & Flecknell, P.A. Experimental and surgical techniques in the rat 215–222 (Academic, London, 1992).

    Google Scholar 

  18. Antich, T.J. Phonophoresis: The principles of the ultrasonic driving force and efficacy in treatment of common orthopedic diagnoses. J. Orth. Sports Phys. Ther. 4, 99–102 ( 1982).

    Article  CAS  Google Scholar 

  19. Ross, D. et al. Randomized crossover comparison of skin irritation with two transdermal oestradiol patches. Br. Med. J. 315, 288 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Rubin and A. Moses for advice; the Massachusetts Institute of Technology/Beth Israel Deaconess Medical Center Clinical Research Center teams and A. Patel for technical assistance; and Nicholas Warner and Tom Devlin for illustrations. This work was supported by American Diabetes Association and Juvenile Diabetic Foundation grants 197033, and the United States–Israel Binational Science Foundation grant 93-00244, and Center for Disease Control.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Kost or Robert Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kost, J., Mitragotri, S., Gabbay, R. et al. Transdermal monitoring of glucose and other analytes using ultrasound . Nat Med 6, 347–350 (2000). https://doi.org/10.1038/73213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/73213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing