Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monoallelic expression of the murine gene encoding Toll-like receptor 4

Abstract

Defects in the gene encoding Toll-like receptor 4 (Tlr4) result in impaired responses to lipopolysaccharide (LPS), rendering mice sensitive to infections by Gram-negative bacteria. C3H/HeJ mice have a codominant allele with a mutation in Tlr4, which results in an intermediate response to LPS in F1 mice from crosses of responder and C3H/HeJ mice. Here we show that this intermediate response to LPS is due to monoallelic expression of Tlr4. Allele usage is maintained during clonal expansion, a situation that resembles allelic exclusion. In contrast, Tlr4 is deleted on the recessive C57BL/10ScCr allele and all cells from F1 mice from crosses of responder and C57BL/10ScCr mice express TLR4 protein. Thus, Tlr4 is an autosomal gene whose expression is regulated similarly to that of genes on the X chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Tlr4 mRNA in spleen and bone marrow cells from B6 mice.
Figure 2: Flow cytometry analysis of CD14 expression in LPS-stimulated bone marrow granulocytes.
Figure 3: Expression of CD69 in LPS-stimulated B lymphocytes.
Figure 4: Kinetics of CD69 up-regulation in LPS-stimulated B lymphocytes.
Figure 5: Single-cell analysis of Tlr4 allele usage.
Figure 6: Expression of Tlr4 during B cell ontogeny.
Figure 7: RT-PCR analysis of Tlr4 allele usage during B cell ontogeny.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Kaisho, T. & Akira, S. Critical roles of Toll-like receptors in host defense. Crit. Rev. Immunol. 20, 393–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for Tlr4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  5. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Watson, J. & Riblet, R. Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic responses to lipopolysaccharides. J. Exp. Med. 140, 1147–1161 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coutinho, A., Forni, L., Melchers, F. & Watanabe, T. Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide. Eur. J. Immunol. 7, 325–328 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Galanos, C. & Freudenberg, M.A. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 187, 346–356 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Coutinho, A. & Meo, T. Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 7, 17–24 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Coutinho, A., Moller, G. & Gronowicz, E. Genetical control of B-cell responses. IV. Inheritance of the unresponsiveness to lipopolysaccharides. J. Exp. Med. 142, 253–258 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Poltorak, A., Smirnova, I., Clisch, R. & Beutler, B. Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice. J. Endotoxin Res. 6, 51–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Weiler, E. Differential activity of allelic γ-globulin genes in antibody-producing cells. Proc. Natl. Acad. Sci. USA 54, 1765–1772 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikuta, K., Ogura, T., Shimizu, A. & Honjo, T. Low frequency of somatic mutation in β-chain variable region genes of human T-cell receptors. Proc. Natl. Acad. Sci. USA 82, 7701–7705 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goverman, J. et al. Rearranged β T cell receptor genes in a helper T cell clone specific for lysozyme: no correlation between Vβ and MHC restriction. Cell 40, 859–867 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Held, W., Roland, J. & Raulet, D.H. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature 376, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Hollander, G.A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bix, M. & Locksley, R.M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hu-Li, J. et al. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Riviere, I., Sunshine, M.J. & Littman, D.R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Meller, V.H. Dosage compensation: making 1X equal 2X. Trends Cell Biol. 10, 54–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Panning, B. & Jaenisch, R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 93, 305–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tilghman, S.M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Bottaro, A. et al. Deletion of the IgH intronic enhancer and associated matrix-attachment regions decreases, but does not abolish, class switching at the μ locus. Int. Immunol. 10, 799–806 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Pham, C.T., MacIvor, D.M., Hug, B.A., Heusel, J.W. & Ley, T.J. Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. USA 93, 13090–13095 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barreto, V. & Cumano, A. Frequency and characterization of phenotypic Ig heavy chain allelically included IgM-expressing B cells in mice. J. Immunol. 164, 893–899 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Nutt, S.L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nat. Genet. 21, 390–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Rhoades, K.L. et al. Allele-specific expression patterns of interleukin-2 and Pax-5 revealed by a sensitive single-cell RT-PCR analysis. Curr. Biol. 10, 789–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Shulman, M.J. & Wu, G.E. Hypothesis: genes which function in a stochastic lineage commitment process are subject to monoallelic expression. Semin. Immunol. 11, 369–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Freitas, A.A., Rosado, M.M., Viale, A.C. & Grandien, A. The role of cellular competition in B cell survival and selection of B cell repertoires. Eur. J. Immunol. 25, 1729–1738 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A. & Panning, B. Xist RNA and the mechanism of X-chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Willard, H.F. X chromosome inactivation, XIST, and pursuit of the X-inactivation center. Cell 86, 5–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Clerc, P. & Avner, P. Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat. Genet. 19, 249–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Du, X., Poltorak, A., Silva, M. & Beutler, B. Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor. Blood Cells Mol. Dis. 25, 328–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. O'Brien, A.D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  40. Tahri-Jouti, M.A. et al. Specific binding of lipopolysaccharides to mouse macrophages. II. Involvement of distinct lipid a substructures. Mol. Immunol. 27, 763–770 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Andersson, J., Coutinho, A., Lernhardt, W. & Melchers, F. Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell 10, 27–34 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Godin, I., Dieterlen-Lievre, F. & Cumano, A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl. Acad. Sci. USA 92, 773–777 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Vilarinho and M.T. Silva for encouragement; T. Pedron for technical help; O. Azougui, A. Peixoto, M. Monteiro and especially P. Pereira for discussions; and P. Pereira, A. O'Garra and D. Kioussis for critically reading the manuscript. J.P.P. was supported by fellowships from PRAXIS XXI (BD/15531/97), the Instituto Gulbenkian de Ciência and the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vieira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J., Girard, R., Chaby, R. et al. Monoallelic expression of the murine gene encoding Toll-like receptor 4. Nat Immunol 4, 464–470 (2003). https://doi.org/10.1038/ni917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing