Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stromal cell–derived membrane protein that supports hematopoietic stem cells

Abstract

Hematopoietic stem cells cannot be maintained in vitro without stromal cells, even if they are provided with growth factors, and it is likely that supportive cells in the bone marrow express membrane or secreted proteins that maintain hematopoiesis. Here we show that mKirre, a mammalian homolog of the gene kirre of Drosophila melanogaster, encodes a type Ia membrane protein that is involved in the hematopoietic supportive capacity of OP9 mouse stromal cells. Repressing mKirre expression with a short interfering RNA significantly reduced this supportive capacity. Our data suggest that mKirre is cleaved by metalloproteinases and that the extracellular domain of mKirre is responsible for supporting hematopoietic stem cells. These results contribute to our understanding of the mechanisms by which the hematopoietic microenvironment regulates hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of SSTs.
Figure 2: The hematopoiesis-supporting ability of SST proteins.
Figure 3: Sequence of mKirre.
Figure 4: Expression of mKirre.
Figure 5: Hematopoiesis-supporting activity of mKirre.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Paul, S.R., Yang, Y.C., Donahue, R.E., Goldring, S. & Williams, D.A. Stromal cell-associated hematopoiesis: immortalization and characterization of a primate bone marrow-derived stromal cell line. Blood 77, 1723–1733 (1991).

    CAS  PubMed  Google Scholar 

  2. Toksoz, D. et al. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc. Natl. Acad. Sci. USA 89, 7350–7354 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Namikawa, R., Muench, M.O., de Vries, J.E. & Roncarolo, M.G. The FLK2/FLT3 ligand synergizes with interleukin-7 in promoting stromal-cell-independent expansion and differentiation of human fetal pro-B cells in vitro. Blood 87, 1881–1890 (1996).

    CAS  PubMed  Google Scholar 

  4. Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91, 4084–4091 (1998).

    CAS  PubMed  Google Scholar 

  5. Bhatia, M. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 189, 1139–1148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Breems, D.A. et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood 91, 111–117 (1998).

    CAS  PubMed  Google Scholar 

  8. Harrison, B., Reincke, U., Smith, M. & Hellman, S. The morphology of hematopoietic layers in long-term cultures of mouse bone marrow. Blood Cells 10, 451–466 (1984).

    CAS  PubMed  Google Scholar 

  9. Sutherland, H.J., Eaves, C.J., Lansdorp, P.M., Thacker, J.D. & Hogge, D.E. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78, 666–672 (1991).

    CAS  PubMed  Google Scholar 

  10. Croisille, L. et al. Hydrocortisone differentially affects the ability of murine stromal cells and human marrow-derived adherent cells to promote the differentiation of CD34+/CD38 long-term culture-initiating cells. Blood 84, 4116–4124 (1994).

    CAS  PubMed  Google Scholar 

  11. Wineman, J., Moore, K., Lemischka, I. & Muller-Sieburg, C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87, 4082–4090 (1996).

    CAS  PubMed  Google Scholar 

  12. Collins, L.S. & Dorshkind, K. A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J. Immunol. 138, 1082–1087 (1987).

    CAS  PubMed  Google Scholar 

  13. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Nakano, T., Kodama, H. & Honjo, T. In vitro development of primitive and definitive erythrocytes from different precursors. Science 272, 722–724 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Szilvassy, S.J. et al. Leukemia inhibitory factor upregulates cytokine expression by a murine stromal cell line enabling the maintenance of highly enriched competitive repopulating stem cells. Blood 87, 4618–4628 (1996).

    CAS  PubMed  Google Scholar 

  16. Shih, C.C., Hu, M.C., Hu, J., Medeiros, J. & Forman, S.J. Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells. Blood 94, 1623–1636 (1999).

    CAS  PubMed  Google Scholar 

  17. Shih, C.C. et al. A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood 95, 1957–1966 (2000).

    CAS  PubMed  Google Scholar 

  18. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kojima, T. & Kitamura, T. A signal sequence trap based on a constitutively active cytokine receptor. Nat. Biotechnol. 17, 487–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Nagasawa, A. et al. Cloning of the cDNA for a new member of the immunoglobulin superfamily (ISLR) containing leucine-rich repeat (LRR). Genomics 44, 273–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kawai, J. et al. Functional annotation of a full-length mouse cDNA collection. Nature 409, 685–690 (2001).

    Article  PubMed  Google Scholar 

  22. Nagase, T., Nakayama, M., Nakajima, D., Kikuno, R. & Ohara, O. Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 8, 85–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ramos, R.G. et al. The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Dev. 7, 2533–2547 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Strunkelnberg, M. et al. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128, 4229–4239 (2001).

    CAS  PubMed  Google Scholar 

  26. Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M.V. & Bate, M. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102, 189–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Paul, S.R. et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell–derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. USA 87, 7512–7516 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oritani, K. et al. Limitin: An interferon-like cytokine that preferentially influences B-lymphocyte precursors. Nat. Med. 6, 659–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hackney, J.A. et al. A molecular profile of a hematopoietic stem cell niche. Proc. Natl. Acad. Sci. USA 99, 13061–13066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogawa, T., Dobrinski, I., Avarbock, M.R. & Brinster, R.L. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat. Med. 6, 29–34 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, Q., Sun, E.E., Klein, R.S. & Flanagan, J.G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Lagasse, E., Shizuru, J.A., Uchida, N., Tsukamoto, A. & Weissman, I.L. Toward regenerative medicine. Immunity 14, 425–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ying, Q.L., Nichols, J., Evans, E.P. & Smith, A.G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ueno, H. et al. Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function. Mol. Biol. Cell 11, 735–746 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boguski, M.S., Lowe, T.M. & Tolstoshev, C.M. dbESTædatabase for 'expressed sequence tags'. Nat. Genet. 4, 332–333 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Miyazaki, J. et al. Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene 79, 269–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Onishi, M. et al. Applications of retrovirus-mediated expression cloning. Exp. Hematol. 24, 324–329 (1996).

    CAS  PubMed  Google Scholar 

  43. Ueno, H. et al. An epidermal growth factor receptor-leukocyte tyrosine kinase chimeric receptor generates ligand-dependent growth signals through the Ras signaling pathway. J. Biol. Chem. 270, 20135–20142 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Y.C. et al. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47, 3–10 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y.C. et al. Processing of a fusion protein by endoprotease in COS-1 cells for secretion of mature peptide by using a chimeric expression vector. Proc. Natl. Acad. Sci. USA 90, 8957–8961 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sellin, L. et al. NEPH1 defines a novel family of podocin interacting proteins. FASEBJ. 17, 115–117 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nakauchi and A. Miyajima for discussion, and E. Kitadai and M. Umeki for technical assistance. This work was supported in part by grants-in-aid from the Ministry of Education, Science, Technology, Sports and Culture, Japan and from the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Ueno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, H., Sakita-Ishikawa, M., Morikawa, Y. et al. A stromal cell–derived membrane protein that supports hematopoietic stem cells. Nat Immunol 4, 457–463 (2003). https://doi.org/10.1038/ni916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing