Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development

Abstract

The nature of signals that govern the development of immunoglobulin heavy chain-dependent B cells is largely unknown. Using mice deficient for the B cell-expressed Src-family protein tyrosine kinases (SFKs) Blk, Fyn and Lyn, we show an essential role of these kinases in pre-B cell receptor (pre-BCR)– mediated NF-κB activation and B cell development. This signaling defect is SFK specific, as a deficiency in Syk, which controls pre-B cell development, does not affect NF-κB induction. Impaired NF-κB induction was overcome by the activation of protein kinase C (PKC)-λ, thus suggesting the involvement of PKC-λ in pre-BCR–mediated SFK-dependent activation of NF-κB. Our data show the existence of a functionally distinct SFK signaling module responsible for pre-BCR–mediated NF-κB activation and B cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired B cell development in Blk−/−Fyn−/−Lyn−/− mice.
Figure 2: Increased cell death in pre-B cells from Blk−/−Fyn−/−Lyn−/− mice.
Figure 3: Impaired B cell development in Blk−/−Fyn−/−Lyn−/− mice is B cell autonomous.
Figure 4: Igβ-mediated tyrosine phosphorylation in Blk−/−Fyn−/−Lyn−/− pro-B cells.
Figure 5: Impaired anti-Igβ–induced NF-κB activation in Blk−/−Fyn−/−Lyn−/−, but not Syk−/−, pro-B cells.
Figure 6: PKC-λ is involved in SFK-mediated signaling.

Similar content being viewed by others

References

  1. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  2. Karasuyama, H., Rolink, A. & Melchers, F. Surrogate light chain in B cell development. Adv. Immunol. 63, 1–41 (1996).

    Article  CAS  Google Scholar 

  3. Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15, 453–479 (1997).

    Article  CAS  Google Scholar 

  4. Rowley, R.B., Burkhardt, A.L., Chao, H.G., Matsueda, G.R. & Bolen, J.B. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Iga/Igb immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270, 11590–11594 (1995).

    Article  CAS  Google Scholar 

  5. Takata, M. et al. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13, 1341–1349 (1994).

    Article  CAS  Google Scholar 

  6. Torres, R.M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1802–1804 (1996).

    Article  Google Scholar 

  7. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  Google Scholar 

  8. Cheng, A.M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    Article  CAS  Google Scholar 

  9. Yamanashi, Y. et al. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I. Proc. Natl. Acad. Sci. USA 86, 6538–6542 (1989).

    Article  CAS  Google Scholar 

  10. Law, D.A., Gold, M.R. & DeFranco, A.L. Examination of B lymphoid cell lines for membrane immunoglobulin-stimulated tyrosine phosphorylation and src-family tyrosine kinase mRNA expression. Mol. Immunol. 29, 917–926 (1992).

    Article  CAS  Google Scholar 

  11. Wechsler, R.J. & Monroe, J.G. Immature B lymphocytes are deficient in expression of the src-family kinases p59fyn and p55fgr1. J. Immunol. 154, 1919–1929 (1995).

    CAS  PubMed  Google Scholar 

  12. Brouns, G.S. et al. The structure of the mu/pseudo light chain complex on human pre-B cells is consistent with a function in signal transduction. Eur. J. Immunol. 23, 1088–1097 (1993).

    Article  CAS  Google Scholar 

  13. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  14. Johnson, S.A. et al. Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J. Immunol. 155, 4596–4603 (1995).

    CAS  PubMed  Google Scholar 

  15. Zoller, K.E., MacNeil, I.A. & Brugge, J.S. Protein tyrosine kinases Syk and ZAP-70 display distinct requirements for Src family kinases in immune response receptor signal transduction. J. Immunol. 158, 1650–1659 (1997).

    CAS  PubMed  Google Scholar 

  16. Texido, G. et al. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol. Cell. Biol. 20, 1227–1233 (2000).

    Article  CAS  Google Scholar 

  17. Hibbs, M.L. et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301–311 (1995).

    Article  CAS  Google Scholar 

  18. Nishizumi, H. et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 3, 549–560 (1995).

    Article  CAS  Google Scholar 

  19. Stein, P.L., Lee, H.M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    Article  CAS  Google Scholar 

  20. Lowell, C.A., Soriano, P. & Varmus, H.E. Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity. Genes Dev. 8, 387–398 (1994).

    Article  CAS  Google Scholar 

  21. Yasue, T. et al. A critical role of Lyn and Fyn for B cell responses to CD38 ligation and interleukin 5. Proc. Natl. Acad. Sci. USA 94, 10307–10312 (1997).

    Article  CAS  Google Scholar 

  22. Horikawa, K. et al. Distinctive roles of Fyn and Lyn in IgD- and IgM-mediated signaling. Int. Immunol. 11, 1441–1449 (1999).

    Article  CAS  Google Scholar 

  23. Meng, F. & Lowell, C.A. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J. Exp. Med. 185, 1661–1670 (1997).

    Article  CAS  Google Scholar 

  24. Nagata, K. et al. The Iga/Igb heterodimer on m-negative proB cells is competent for transducing signals to induce early B cell differentiation. Immunity 7, 559–570 (1997).

    Article  CAS  Google Scholar 

  25. Maki, K., Nagata, K., Kitamura, F., Takemori, T. & Karasuyama, H. Immunoglobulin b signaling regulates locus accessibility for ordered immunoglobulin gene rearrangements. J. Exp. Med. 191, 1333–1340 (2000).

    Article  CAS  Google Scholar 

  26. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  Google Scholar 

  27. Zhang, J., Billingsley, M.L., Kincaid, R.L. & Siraganian, R.P. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. J. Biol. Chem. 275, 35442–35447 (2000).

    Article  CAS  Google Scholar 

  28. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47–57 (2000).

    Article  CAS  Google Scholar 

  29. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  30. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10, 129–133 (2000).

    Article  CAS  Google Scholar 

  31. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  32. Delhase, M., Hayakawa, M., Chen, Y. & Karin, M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284, 309–313 (1999).

    Article  CAS  Google Scholar 

  33. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  34. Saijo, K. et al. Protein kinase C β controls nuclear factor κB activation in B cells through selective regulation of the IκB kinase α. J. Exp. Med. 195, 1647–1652 (2002).

    Article  CAS  Google Scholar 

  35. Leitges, M. et al. Immunodeficiency in protein kinase Cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  Google Scholar 

  36. Mischak, H. et al. Expression of protein kinase C genes in hemopoietic cells is cell-type- and B cell-differentiation stage specific. J. Immunol. 147, 3981–3987 (1991).

    CAS  PubMed  Google Scholar 

  37. Valverde, A.M., Sinnett-Smith, J., Van Lint, J. & Rozengurt, E. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc. Natl. Acad. Sci. USA 91, 8572–8576 (1994).

    Article  CAS  Google Scholar 

  38. Johannes, F.J., Prestle, J., Eis, S., Oberhagemann, P. & Pfizenmaier, K. PKCm is a novel, atypical member of the protein kinase C family. J. Biol. Chem. 269, 6140–6148 (1994).

    CAS  PubMed  Google Scholar 

  39. Wooten, M.W., Vandenplas, M.L., Seibenhener, M.L., Geetha, T. & Diaz-Meco, M.T. Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C's via a src kinase pathway. Mol. Cell. Biol. 21, 8414–8427 (2001).

    Article  CAS  Google Scholar 

  40. Martin, P. et al. Role of ζ PKC in B-cell signaling and function. EMBO J. 21, 4049–4057 (2002).

    Article  CAS  Google Scholar 

  41. Lu, Y., Jamieson, L., Brasier, A.R. & Fields, A.P. NF-κB/RelA transactivation is required for atypical protein kinase C ι-mediated cell survival. Oncogene 20, 4777–4792 (2001).

    Article  CAS  Google Scholar 

  42. Kistler, B., Rolink, A., Marienfeld, R., Neumann, M. & Wirth, T. Induction of nuclear factor-κB during primary B cell differentiation. J. Immunol. 160, 2308–2317 (1998).

    CAS  PubMed  Google Scholar 

  43. Horwitz, B.H., Scott, M.L., Cherry, S.R., Bronson, R.T. & Baltimore, D. Failure of lymphopoiesis after adoptive transfer of NF-κB-deficient fetal liver cells. Immunity 6, 765–772 (1997).

    Article  CAS  Google Scholar 

  44. Weih, F. et al. p50-NF-κB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J. Exp. Med. 185, 1359–1370 (1997).

    Article  CAS  Google Scholar 

  45. Lallena, M.J., Diaz-Meco, M.T., Bren, G., Paya, C.V. & Moscat, J. Activation of IκB kinase β by protein kinase C isoforms. Mol. Cell. Biol. 19, 2180–2188 (1999).

    Article  CAS  Google Scholar 

  46. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).

    Article  CAS  Google Scholar 

  47. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nat. Immunol. 3, 836–843 (2002).

    Article  CAS  Google Scholar 

  48. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nat. Immunol. 3, 830–835 (2002).

    Article  CAS  Google Scholar 

  49. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.C. Nussenzweig, K. Rajewsky and S. Desiderio for helpful discussions, M. Clark for reagents and Y. Yang for help with statistical analysis. This work is supported by grants from the National Institutes of Health (AI053545-01 to A.T. and DK58066 and HL54476 to C.A.L), the S.L.E. Foundation (to K.S.), the Irene Diamond foundation (to A.T.), the Boehringer Ingelheim Fonds (to A.P.), the Japanese Ministry of Education, Culture, Sports, Science and Technology (Grant-in-aid to H.K.), and the Deutsche Forschungsgemeinschaft (to M.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaoru Saijo or Alexander Tarakhovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saijo, K., Schmedt, C., Su, Ih. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat Immunol 4, 274–279 (2003). https://doi.org/10.1038/ni893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing