Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of Lck activity by CD4 and CD28 in the immunological synapse

Abstract

Although the Src family tyrosine kinase Lck is essential for T cell receptor (TCR) signaling, whether or how Lck is activated is unknown. Using a phosphospecific antiserum to Lck, we show here that Lck becomes autophosphorylated when T cells are stimulated by antigen-presenting cells (APCs). We found that TCR cross-linking alone could not stimulate Lck autophosphorylation and CD45 was not required for this process. Instead, the T cell accessory molecules CD4 and CD28 cooperated to induce autophosphorylation of Lck. CD4 recruited Lck to the T cell–APC interface, whereas CD28 sustained Lck activation. These data show how the multiple interactions afforded by the immunological synapse drive efficient and highly specific signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The antiserum to pY394 is specific for autophosphorylated Lck.
Figure 2: The antiserum to pY394 has a limit of detection of 10 ng and only weakly reacts with autophosphorylated Fyn.
Figure 3: Autophosphorylated Lck is present at the T cell–APC interface.
Figure 4: Activation of Lck by CD4 and CD28 but not by the TCR.
Figure 5: CD4 recruits Lck to the T cell–APC interface, whereas CD28 potentiates Lck activation.

Similar content being viewed by others

References

  1. Delon, J. & Germain, R. N. Information transfer at the immunological synapse. Curr. Biol. 10, 923–933 (2000).

    Article  Google Scholar 

  2. van Oers, N. S. T cell receptor-mediated signs and signals governing T cell development. Semin. Immunol. 11, 227–237 (1999).

    Article  CAS  Google Scholar 

  3. Alexander, D. R. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. Semin. Immunol. 12, 349–359 (2000).

    Article  CAS  Google Scholar 

  4. Ostergaard, H. L. et al. Expression of CD45 alters phosphorylation of the Lck encoded tyrosine protein kinase in murine lymphoma T cell lines. Proc. Natl Acad. Sci. USA 86, 8959–8963 (1989).

    Article  CAS  Google Scholar 

  5. McFarland, E. D. et al. Correlation between Src family member regulation by the protein tyrosine phosphatase CD45 and transmembrane signaling through the T cell receptor. Proc. Natl Acad. Sci. USA 90, 1402–1406 (1993).

    Article  CAS  Google Scholar 

  6. Shaw, A. S., Gauen, L. K. & Zhu, Y. Interactions of TCR tyrosine based activation motifs with tyrosine kinases. Semin. Immunol. 7, 13–20 (1995).

    Article  CAS  Google Scholar 

  7. Porter, M., Schindler, T., Kuriyan, J. & Miller, W. T. Reciprocal regulation of Hck activity by phosphorylation of Tyr(527) and Tyr(416). Effect of introducing a high affinity intramolecular SH2 ligand. J. Biol. Chem. 275, 2721–2726 (2000).

    Article  CAS  Google Scholar 

  8. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  CAS  Google Scholar 

  9. Holdorf, A. D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med. 190, 375–384 (1999).

    Article  CAS  Google Scholar 

  10. Caron, L., Abraham, N., Pawson, T. & Veillette, A. Structural requirements for enhancement of T cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Mol. Cell. Biol. 12, 2720–2729 (1992).

    Article  CAS  Google Scholar 

  11. Veillette, A. & Fournel, M. The CD4 associated tyrosine protein kinase p56lck is positively regulated through its site of autophosphorylation. Oncogene 5, 1455–1462 (1990).

    CAS  PubMed  Google Scholar 

  12. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).

    Article  CAS  Google Scholar 

  13. Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  Google Scholar 

  14. Samelson, L. E., Phillips, A. F., Luong, E. T. & Klausner, R. D. Association of the Fyn protein-tyrosine kinase with the T cell antigen receptor. Proc. Natl Acad. Sci. USA 87, 4358–4362 (1990).

    Article  CAS  Google Scholar 

  15. O'Shea, J. J., McVicar, D. W., Bailey, T. L., Burns, C. & Smyth, M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc. Natl Acad. Sci. USA 89, 10306–10310 (1992).

    Article  CAS  Google Scholar 

  16. Straus, D. B. & Weiss, A. Genetic evidence for the involvement of the Lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–593 (1992).

    Article  CAS  Google Scholar 

  17. Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  Google Scholar 

  18. Kersh, G. J. & Allen, P. M. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184, 1259–1268 (1996).

    Article  CAS  Google Scholar 

  19. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  20. Klausner, R. D. & Samelson, L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell 64, 875–878 (1991).

    Article  CAS  Google Scholar 

  21. Veillette, A., Horak, I. D., Horak, E. M., Bookman, M. A. & Bolen, J. B. Alterations of the lymphocyte-specific protein tyrosine kinase (p56lck) during T cell activation. Mol. Cell. Biol. 8, 4353–4561 (1988).

    Article  CAS  Google Scholar 

  22. Danielian, S., Fagard, R., Alcover, A., Acuto, O. & Fischer, S. The lymphocyte-specific protein tyrosine kinase p56lck is hyperphosphorylated on serine and tyrosine residues within minutes after activation via T cell receptor or CD2. Eur. J. Immunol. 19, 2183–2189 (1989).

    Article  CAS  Google Scholar 

  23. Soula, M. et al. Anti-CD3 and phorbol ester induce distinct phosphorylated sites in the SH2 domain of p56lck. J. Biol. Chem. 268, 27420–27427 (1993).

    CAS  PubMed  Google Scholar 

  24. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article  CAS  Google Scholar 

  25. Veillette, A., Bolen, J. B. & Bookman, M. A. Alterations in tyrosine protein phosphorylation induced by antibody mediated cross-linking of the CD4 receptor of T lymphocytes. Mol. Cell. Biol. 9, 4441–4446 (1989).

    Article  CAS  Google Scholar 

  26. Luo, K. X. & Sefton, B. M. Cross-linking of T cell surface molecules CD4 and CD8 stimulates phosphorylation of the Lck tyrosine protein kinase at the autophosphorylation site. Mol. Cell. Biol. 10, 5305–5313 (1990).

    Article  CAS  Google Scholar 

  27. Rudd, C. E. et al. Molecular analysis of the interaction of p56lck with the CD4 and CD8 antigens. Adv. Exp. Med. Biol. 292, 85–96 (1991).

    Article  CAS  Google Scholar 

  28. Holdorf, A. D., Kanagawa, O. & Shaw, A. S. CD28 and T cell co-stimulation. Rev. Immunogenet. 2, 175–184 (2000).

    CAS  PubMed  Google Scholar 

  29. Nunes, J. A., Truneh, A., Olive, D. & Cantrell, D. A. Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules. J. Biol. Chem. 271, 1591–1598 (1996).

    Article  CAS  Google Scholar 

  30. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  31. Olszowy, M. W., Leuchtmann, P. L., Veillette, A. & Shaw, A. S. Comparison of p56lck and p59fyn protein expression in thymocyte subsets, peripheral T cells, NK cells, and lymphoid cell lines. J. Immunol. 155, 4236–4240 (1995).

    CAS  PubMed  Google Scholar 

  32. Desai, D. M., Sap, J., Silvennoinen, O., Schlessinger, J. & Weiss, A. The catalytic activity of the CD45 membrane-proximal phosphatase domain is required for TCR signaling and regulation. EMBO J. 13, 4002–4010 (1994).

    Article  CAS  Google Scholar 

  33. Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).

    Article  CAS  Google Scholar 

  34. Koretzky, G. A., Picus, J., Schultz, T. & Weiss, A. Tyrosine phosphatase CD45 is required for T cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl Acad. Sci. USA 88, 2037–2041 (1991).

    Article  CAS  Google Scholar 

  35. Deans, J. P., Kanner, S. B., Torres, R. M. & Ledbetter, J. A. Interaction of CD4:Lck with the T cell receptor/CD3 complex induces early signaling events in the absence of CD45 tyrosine phosphatase. Eur. J. Immunol. 22, 661–668 (1992).

    Article  CAS  Google Scholar 

  36. Vidal, K., Daniel, C., Hill, M., Littman, D. R. & Allen, P. M. Differential requirements for CD4 in TCR-ligand interactions. J. Immunol. 163, 4811–4818 (1999).

    CAS  PubMed  Google Scholar 

  37. Green, J. M., Karpitskiy, V., Kimzey, S. L. & Shaw, A. S. Coordinate regulation of T cell activation by CD2 and CD28. J. Immunol. 164, 3591–3595 (2000).

    Article  CAS  Google Scholar 

  38. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  39. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  Google Scholar 

  40. Bromley, S. K. et al. The immunological synapse and CD28-CD80 interactions. Nature Immunol. 2, 1159–1166 (2001).

    Article  CAS  Google Scholar 

  41. Hernandez-Hoyos, G., Sohn, S. J., Rothenberg, E. V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  Google Scholar 

  42. Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B. & Allen, P. M. Partial T cell signaling: altered phospho-ζ and lack of ZAP70 recruitment in APL-induced T cell anergy. Cell 79, 913–922 (1994).

    Article  CAS  Google Scholar 

  43. Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  44. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  Google Scholar 

  45. van der Merwe, P. A. The TCR Triggering Puzzle. Immunity 14, 665–668 (2001).

    Article  CAS  Google Scholar 

  46. Delon, J. et al. CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity 9, 467–473 (1998).

    Article  CAS  Google Scholar 

  47. Block, M. S., Johnson, A. J., Mendez-Fernandez, Y. & Pease, L. R. Monomeric class I molecules mediate TCR/CD3ɛ/CD8 interaction on the surface of T cells. J. Immunol. 167, 821–826 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Chan, E. Unanue and J. Kim for critical review of the manuscript; S. Ranganath and D. Donermeyer for assistance with the T cell cultures; and J. Green for the CD28-deficient DO11.10 mice. Supported by the NIH (A. S.), the Cancer Research Institute (A. H.) and the Burroughs-Wellcome Fund (W. R. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey S. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdorf, A., Lee, KH., Burack, W. et al. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3, 259–264 (2002). https://doi.org/10.1038/ni761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing