Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

In vivo veritas: pathogenesis of infection as it actually happens

Abstract

Host-microbe interactions define the life histories of all organisms. We live and die surrounded by harmless and harmful organisms that affect us in a multitude of ways and are themselves affected by our responses. Generations of such reciprocal interactions have produced homeostasis between us and some microbes (commensals), but not between us and others (pathogens), whereas still other microbes (opportunists) change status depending on the host. The study of pathogenesis seeks to define in molecular and genetic terms the difference between these outcomes with the hope of finding ways to prevent disease without losing the symbiotic benefits of microbial colonization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptualizing pathogenesis.

References

  1. McGeoch, D.J., Rixon, F.J. & Davison, A.J. Topics in herpesvirus genomics and evolution. Virus Res. 117, 90–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, R., Oldstone, M.B.A. & Palese, P. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat. Immunol. 8, 1188–1193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zampieri, C.A., Sullivan, N.J. & Nabel, G.J. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat. Immunol. 8, 1159–1164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy, C.R. & Mocarski, E.S. Pathogen subversion of cell-intrinsic innate immunity. Nat. Immunol. 8, 1179–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Quintana-Murci, L., Alcaïs, A., Abel, L. & Casanova, J.-L. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat. Immunol. 8, 1165–1171 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yates, J.R. et al. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med. 357, 553–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, N., Tan, N.S., Ho, B. & Ding, J.L. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat. Immunol. 8, 1114–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. McMichael, A.J. From influenza to HIV—and back? Nat. Immunol. 8, 1149–1151 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Braaten, D.C. et al. Effective control of chronic gamma-herpesvirus infection by unconventional MHC class Ia–independent CD8 T cells. Plos Pathogens 2, e37 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moretta, L., Romagnani, C., Pietra, G., Moretta, A. & Mingari, M.C. NK-CTLs, a novel HLA-E–restricted T-cell subset. Trends Immunol. 24, 136–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Pietra, G. et al. HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 100, 10896–10901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karst, S.M., Wobus, C.E., Lay, M., Davidson, J. & Virgin, H.W. STAT-1–dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wobus, C.E. et al. Replication of a norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2, e432 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hsu, C.C., Wobus, C.E., Steffen, E.K., Riley, L.K. & Livingston, R.S. Development of a microsphere-based serologic multiplexed fluorescent immunoassay and a reverse transcriptase PCR assay to detect murine norovirus 1 infection in mice. Clin. Diagn. Lab. Immunol. 12, 1145–1151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thackray, L.B. et al. Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J. Virol. 81, 10460–10473 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ren, R.B., Costantini, F., Gorgacz, E.J., Lee, J.J. & Racaniello, V.R. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63, 353–362 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat. Immunol. 5, 1266–1274 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Allander, T. et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 102, 12891–12896 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allander, T. et al. Identification of a third human polyomavirus. J. Virol. 81, 4130–4136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaynor, A.M. et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS. Pathogens 3, e64 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leib, D.A., Machalek, M.A., Williams, B.R., Silverman, R.H. & Virgin, H.W. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl. Acad. Sci. USA 97, 6097–6101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Virgin, H.W. Pathogenesis of viral infection. in Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 327–388 (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  26. Lysenko, E.S., Ratner, A.J., Nelson, A.L. & Weiser, J.N. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS. Pathogens 1, e1 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ratner, A.J., Lysenko, E.S., Paul, M.N. & Weiser, J.N. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc. Natl. Acad. Sci. USA 102, 3429–3434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barton, E.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Pamer, E.G. Immune responses to commensal and environmental microbes. Nat. Immunol. 8, 1173–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Velazquez, P., Waite, J.C. & Dustin, M.L. Dynamics of host defense: the view at the front lines. Nat. Immunol. 8, 1153–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Steed, A.L. et al. Gamma interferon blocks gammaherpesvirus reactivation from latency. J. Virol. 80, 192–200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tibbetts, S.A., Van Dyk, L., Speck, S.H. & Virgin, H.W. Immune control of the number and reactivation phenotype of cells latently infected with a gamma-herpesvirus. J. Virol. 76, 7125–7132 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarawar, S.R. et al. Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J. Virol. 71, 3916–3921 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dal Canto, A.J., Swanson, P.E., O'Guin, A.K., Speck, S.H. & Virgin, H.W. IFN-gamma action in the media of the great elastic arteries, a novel immunoprivileged site. J. Clin. Invest. 107, R15–R22 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weck, K.E. et al. Murine gammaherpesvirus 68 causes severe large vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus induced vascular disease. Nat. Med. 3, 1346–1353 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Gangappa, S., Van Dyk, L.F., Jewett, T.J., Speck, S.H. & Virgin, H.W. Identification of the in vivo role of a viral bcl-2. J. Exp. Med. 195, 931–940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Dyk, L.F., Virgin, H.W. & Speck, S.H. The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J. Virol. 74, 7451–7461 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tscharke, D.C., Reading, P.C. & Smith, G.L. Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J. Gen. Virol. 83, 1977–1986 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Alcami, A. & Smith, G.L. A mechanism for the inhibition of fever by a virus. Proc. Natl. Acad. Sci. USA 93, 11029–11034 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alcami, A. & Smith, G.L. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert W 'Skip' Virgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

'Skip' Virgin, H. In vivo veritas: pathogenesis of infection as it actually happens. Nat Immunol 8, 1143–1147 (2007). https://doi.org/10.1038/ni1529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing