Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

T cell–directed therapies: lessons learned and future prospects

Abstract

Agents interfering with T cell function are therapeutic mainstays for various autoimmune diseases and for transplant approaches to organ failure. The understanding of T cell biology has blossomed since the development of most agents now in use. Here we discuss T cell–specific agents now in use, others recently added to the therapeutic armamentarium and promising agents being investigated in clinical and preclinical studies. In addition, we reflect on the risks and benefits involved in the testing of such agents clinically, with examples of agents that have successfully been used in the clinic and agents that failed to reach therapeutic use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular targets that modulate T cell function.

Similar content being viewed by others

References

  1. Abraham, R.T. & Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 4, 301–308 (2004).

    Article  CAS  Google Scholar 

  2. Starzl, T.E. et al. The clinical use of antilymphocyte globulin in renal homotransplantation. Transplantation 5, 1100–1005. (1967).

    Article  Google Scholar 

  3. Cosimi, A.B. et al. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. 305, 308–314 (1981).

    Article  CAS  Google Scholar 

  4. Charpentier, B. et al. Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 54, 997–1002 (1992).

    Article  CAS  Google Scholar 

  5. Weinshenker, B.G., Bass, B., Karlik, S., Ebers, G.C. & Rice, G.P. An open trial of OKT3 in patients with multiple sclerosis. Neurology 41, 1047–1052 (1991).

    Article  CAS  Google Scholar 

  6. Xu, D. et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200, 16–26 (2000).

    Article  CAS  Google Scholar 

  7. Utset, T.O. et al. Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J. Rheumatol. 29, 1907–1913 (2002).

    CAS  PubMed  Google Scholar 

  8. Herold, K.C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  Google Scholar 

  9. Coles, A.J. et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354, 1691–1695 (1999).

    Article  CAS  Google Scholar 

  10. Friend, P.J. et al. Campath-1M–prophylactic use after kidney transplantation. A randomized controlled clinical trial. Transplantation 48, 248–253 (1989).

    Article  CAS  Google Scholar 

  11. Hale, G. et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 62, 873–882 (1983).

    CAS  PubMed  Google Scholar 

  12. Hale, G. & Waldmann, H. CAMPATH-1 monoclonal antibodies in bone marrow transplantation. J. Hematother. 3, 15–31 (1994).

    Article  CAS  Google Scholar 

  13. Isaacs, J.D. et al. CAMPATH-1H in rheumatoid arthritis–an intravenous dose-ranging study. Br. J. Rheumatol. 35, 231–240 (1996).

    Article  CAS  Google Scholar 

  14. Wendling, D. et al. A randomized, double blind, placebo controlled multicenter trial of murine anti-CD4 monoclonal antibody therapy in rheumatoid arthritis. J. Rheumatol. 25, 1457–1461 (1998).

    CAS  PubMed  Google Scholar 

  15. Choy, E.H., Chikanza, I.C., Kingsley, G.H., Corrigall, V. & Panayi, G.S. Treatment of rheumatoid arthritis with single dose or weekly pulses of chimaeric anti-CD4 monoclonal antibody. Scand. J. Immunol. 36, 291–298 (1992).

    Article  CAS  Google Scholar 

  16. Critchfield, J.M. & Lenardo, M.J. Antigen-induced programmed T cell death as a new approach to immune therapy. Clin. Immunol. Immunopathol. 75, 13–19 (1995).

    Article  CAS  Google Scholar 

  17. Critchfield, J.M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    Article  CAS  Google Scholar 

  18. Xu, Y. et al. Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J. Immunol. 171, 562–568 (2003).

    Article  CAS  Google Scholar 

  19. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    Article  CAS  Google Scholar 

  20. Bluestone, J.A. & Tang, Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr. Opin. Immunol. 17, 638–642 (2005).

    Article  CAS  Google Scholar 

  21. Calne, R. Cyclosporine as a milestone in immunosuppression. Transplant. Proc. 36, 13S–15S (2004).

  22. Crabtree, G.R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  Google Scholar 

  23. Rusnak, F. & Mertz, P. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521 (2000).

    Article  CAS  Google Scholar 

  24. Ojo, A.O. et al. Chronic renal failure after transplantation of a nonrenal organ. N. Engl. J. Med. 349, 931–940 (2003).

    Article  CAS  Google Scholar 

  25. Chambers, C.A., Kuhns, M.S. & Allison, J.P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4+ T cell responses. Proc. Natl. Acad. Sci. USA 96, 8603–8608 (1999).

    Article  CAS  Google Scholar 

  26. Bluestone, J.A., St Clair, E.W. & Turka, L.A. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24, 233–238 (2006).

    Article  CAS  Google Scholar 

  27. Genovese, M.C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  Google Scholar 

  28. Vincenti, F. et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353, 770–781 (2005).

    Article  CAS  Google Scholar 

  29. Beck, K.E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    Article  CAS  Google Scholar 

  30. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  Google Scholar 

  31. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  Google Scholar 

  32. Vitetta, E.S. & Ghetie, V.F. Immunology. Considering therapeutic antibodies. Science 313, 308–309 (2006).

    Article  CAS  Google Scholar 

  33. Daikh, D.I., Finck, B.K., Linsley, P.S., Hollenbaugh, D. & Wofsy, D. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J. Immunol. 159, 3104–3108 (1997).

    CAS  PubMed  Google Scholar 

  34. Kirk, A.D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat. Med. 5, 686–693 (1999).

    Article  CAS  Google Scholar 

  35. Kawai, T., Andrews, D., Colvin, R.B., Sachs, D.H. & Cosimi, A.B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 6, 114 (2000).

    Article  CAS  Google Scholar 

  36. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  Google Scholar 

  37. Vincenti, F. et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N. Engl. J. Med. 338, 161–165 (1998).

    Article  CAS  Google Scholar 

  38. Nashan, B. et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 350, 1193–1198 (1997).

    Article  CAS  Google Scholar 

  39. Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β. Proc. Natl. Acad. Sci. USA 101, 8705–8708 (2004).

    Article  CAS  Google Scholar 

  40. Yakupoglu, Y.K. & Kahan, B.D. Sirolimus: a current perspective. Exp. Clin. Transplant. 1, 8–18 (2003).

    PubMed  Google Scholar 

  41. Waldmann, T.A. IL-15 in the life and death of lymphocytes: immunotherapeutic implications. Trends Mol. Med. 9, 517–521 (2003).

    Article  CAS  Google Scholar 

  42. Baslund, B. et al. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum. 52, 2686–2692 (2005).

    Article  CAS  Google Scholar 

  43. Hommes, D.W. et al. Fontolizumab, a humanised anti-interferon-γ antibody, demonstrates safety and potential clinical activity in patients with moderate-to-severe Crohn's disease. Gut 55, 1131–1137 (2006).

    Article  CAS  Google Scholar 

  44. Hunter, C.A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531 (2005).

    Article  CAS  Google Scholar 

  45. Mannon, P.J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med. 351, 2069–2079 (2004).

    Article  CAS  Google Scholar 

  46. Casanova, J.L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  Google Scholar 

  47. Gadina, M. et al. Signaling by type I and II cytokine receptors: ten years after. Curr. Opin. Immunol. 13, 363–373 (2001).

    Article  CAS  Google Scholar 

  48. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  Google Scholar 

  49. Changelian, P.S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  Google Scholar 

  50. Shaw, M.H. et al. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc. Natl. Acad. Sci. USA 100, 11594–11599 (2003).

    Article  CAS  Google Scholar 

  51. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    Article  CAS  Google Scholar 

  52. O'Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121–S131 (2002).

    Article  CAS  Google Scholar 

  53. Wormald, S. & Hilton, D.J. Inhibitors of cytokine signal transduction. J. Biol. Chem. 279, 821–824 (2004).

    Article  CAS  Google Scholar 

  54. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  55. Nocentini, G. & Riccardi, C. GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur. J. Immunol. 35, 1016–1022 (2005).

    Article  CAS  Google Scholar 

  56. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  57. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  Google Scholar 

  58. Brinkmann, V., Pinschewer, D.D., Feng, L. & Chen, S. FTY720: altered lymphocyte traffic results in allograft protection. Transplantation 72, 764–769 (2001).

    Article  CAS  Google Scholar 

  59. Tedesco-Silva, H. et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 79, 1553–1560 (2005).

    Article  CAS  Google Scholar 

  60. Kappos, L. et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 355, 1124–1140 (2006).

    Article  CAS  Google Scholar 

  61. Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413–422 (1995).

    Article  CAS  Google Scholar 

  62. Polman, C.H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  63. Kleinschmidt-DeMasters, B.K. & Tyler, K.L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, and National Institute of Arthritis, Musculoskeletal and Skin Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J O'Shea.

Ethics declarations

Competing interests

The National Institutes of Health and J.J.O. hold a patent relating to Jak3 and immunosuppressive drugs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, E., Siegel, R., Harlan, D. et al. T cell–directed therapies: lessons learned and future prospects. Nat Immunol 8, 25–30 (2007). https://doi.org/10.1038/ni1429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing