Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells

A Corrigendum to this article was published on 20 September 2016

Abstract

Immunoglobulin class switching from immunoglobulin M (IgM) to IgG and IgA is central to immunity against viruses and requires the activation of B cells by T cells via CD154 (CD40 ligand) and cytokines. These molecules limit their signaling activity in immune cells by turning on negative feedback proteins, including IκB and SOCS. We show here that negative factor (Nef) protein, an immunosuppressive human immunodeficiency virus 1 protein expressed and released by infected cells, penetrates B cells both in vivo and in vitro. Nef suppressed immunoglobulin class-switch DNA recombination by inducing IκBα and SOCS proteins, which blocked CD154 and cytokine signaling via NF-κB and STAT transcription factors. Thus, human immunodeficiency virus 1 may evade protective T cell–dependent IgG and IgA responses by 'hijacking' physiological feedback inhibitors in B cells via Nef.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cells accumulate Nef in vivo.
Figure 2: Nef penetrates in B cells in vitro and inhibits induction of CSR by CD154 and IL-4.
Figure 3: Nef inhibits the production of IgG, IgA and IgE in B cells exposed to CD154 and IL-4.
Figure 4: Nef does not downregulate CD40, IL-4 and IL-10 receptors on B cells.
Figure 5: Nef inhibits CD154 signaling through NF-κB in B cells.
Figure 6: Nef inhibits cytokine signaling through the Jak-STAT pathway in B cells.
Figure 7: Nef induces IκBα, SOCS1 and SOCS3 in B cells.

Similar content being viewed by others

References

  1. Pantaleo, G. & Fauci, A.S. New concepts in the immunopathogenesis of HIV infection. Annu. Rev. Immunol. 13, 487–512 (1995).

    Article  CAS  Google Scholar 

  2. Lane, H.C. et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N. Engl. J. Med. 309, 453–458 (1983).

    Article  CAS  Google Scholar 

  3. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    Article  CAS  Google Scholar 

  4. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  5. Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  Google Scholar 

  6. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  7. Pantaleo, G. et al. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 88, 9838–9842 (1991).

    Article  CAS  Google Scholar 

  8. Moir, S. et al. Perturbations in B cell responsiveness to CD4+ T cell help in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 100, 6057–6062 (2003).

    Article  CAS  Google Scholar 

  9. Morris, L. et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J. Exp. Med. 188, 233–245 (1998).

    Article  CAS  Google Scholar 

  10. Moir, S. et al. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J. Exp. Med. 192, 637–646 (2000).

    Article  CAS  Google Scholar 

  11. Ravanel, K. et al. Measles virus nucleocapsid protein binds to FcγRII and inhibits human B cell antibody production. J. Exp. Med. 186, 269–278 (1997).

    Article  CAS  Google Scholar 

  12. Guy, B. et al. HIV F/3′ ORF encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330, 266–269 (1987).

    Article  CAS  Google Scholar 

  13. Fujii, Y., Otake, K., Tashiro, M. & Adachi, A. Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett. 393, 93–96 (1996).

    Article  CAS  Google Scholar 

  14. Cullen, B.R. HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93, 685–692 (1998).

    Article  CAS  Google Scholar 

  15. Kestler, H.W., III et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    Article  CAS  Google Scholar 

  16. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  Google Scholar 

  17. Blagoveshchenskaya, A.D., Thomas, L., Feliciangeli, S.F., Hung, C.H. & Thomas, G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111, 853–866 (2002).

    Article  CAS  Google Scholar 

  18. Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  Google Scholar 

  19. Garcia, J.V. & Miller, A.D. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350, 508–511 (1991).

    Article  CAS  Google Scholar 

  20. Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).

    Article  CAS  Google Scholar 

  21. Swingler, S. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat. Med. 5, 997–1003 (1999).

    Article  CAS  Google Scholar 

  22. Swingler, S. et al. HIV-1 Nef intersects the macrophage CD154 signalling pathway to promote resting-cell infection. Nature 424, 213–219 (2003).

    Article  CAS  Google Scholar 

  23. Baur, A.S. et al. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1, 373–384 (1994).

    Article  CAS  Google Scholar 

  24. Kuster, H. et al. Treatment-induced decline of human immunodeficiency virus-1 p24 and HIV-1 RNA in lymphoid tissue of patients with early human immunodeficiency virus-1 infection. Am. J. Pathol. 156, 1973–1986 (2000).

    Article  CAS  Google Scholar 

  25. Brigino, E. et al. Interleukin 10 is induced by recombinant HIV-1 Nef protein involving the calcium/calmodulin-dependent phosphodiesterase signal transduction pathway. Proc. Natl. Acad. Sci. USA 94, 3178–3182 (1997).

    Article  CAS  Google Scholar 

  26. Federico, M. et al. HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood 98, 2752–2761 (2001).

    Article  CAS  Google Scholar 

  27. Quaranta, M.G., Tritarelli, E., Giordani, L. & Viora, M. HIV-1 Nef induces dendritic cell differentiation: a possible mechanism of uninfected CD4+ T cell activation. Exp. Cell Res. 275, 243–254 (2002).

    Article  Google Scholar 

  28. Olivetta, E. et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-κB activation. J. Immunol. 170, 1716–1727 (2003).

    Article  CAS  Google Scholar 

  29. Varin, A. et al. Exogenous Nef protein activates NF-κB, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J. Biol. Chem. 278, 2219–2227 (2003).

    Article  CAS  Google Scholar 

  30. James, C.O. et al. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J. Virol. 78, 3099–3109 (2004).

    Article  CAS  Google Scholar 

  31. Rubartelli, A., Poggi, A., Sitia, R. & Zocchi, M.R. HIV-I Tat: a polypeptide for all seasons. Immunol. Today 19, 543–545 (1998).

    Article  CAS  Google Scholar 

  32. Lefevre, E.A., Krzysiek, R., Loret, E.P., Galanaud, P. & Richard, Y. Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. J. Immunol. 163, 1119–1122 (1999).

    CAS  PubMed  Google Scholar 

  33. He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol. 173, 4479–4491 (2004).

    Article  CAS  Google Scholar 

  34. Peng, B. & Robert-Guroff, M. Deletion of N-terminal myristoylation site of HIV Nef abrogates both MHC-1 and CD4 down-regulation. Immunol. Lett. 78, 195–200 (2001).

    Article  CAS  Google Scholar 

  35. Geyer, M., Fackler, O.T. & Peterlin, B.M. Structure–function relationships in HIV-1 Nef. EMBO Rep. 2, 580–585 (2001).

    Article  CAS  Google Scholar 

  36. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  37. Stumptner-Cuvelette, P. et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc. Natl. Acad. Sci. USA 98, 12144–12149 (2001).

    Article  CAS  Google Scholar 

  38. Chaudhry, A. et al. The Nef protein of HIV-1 induces loss of cell surface costimulatory molecules CD80 and CD86 in APCs. J. Immunol. 175, 4566–4574 (2005).

    Article  CAS  Google Scholar 

  39. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  Google Scholar 

  40. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  41. Lee, S.B., Park, J., Jung, J.U. & Chung, J. Nef induces apoptosis by activating JNK signaling pathway and inhibits NF-κB-dependent immune responses in Drosophila. J. Cell Sci. 118, 1851–1859 (2005).

    Article  CAS  Google Scholar 

  42. Geha, R.S., Jabara, H.H. & Brodeur, S.R. The regulation of immunoglobulin E class-switch recombination. Nat. Rev. Immunol. 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  43. Leonard, W.J. & O'Shea, J.J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  Google Scholar 

  44. Alexander, W.S. & Hilton, D.J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503–529 (2004).

    Article  CAS  Google Scholar 

  45. Burton, D.R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  46. Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 3, 63–72 (2003).

    Article  CAS  Google Scholar 

  47. Watkins, S.C. & Salter, R.D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).

    Article  CAS  Google Scholar 

  48. Poudrier, J. et al. The AIDS disease of CD4C/HIV transgenic mice shows impaired germinal centers and autoantibodies and develops in the absence of IFN-γ and IL-6. Immunity 15, 173–185 (2001).

    Article  CAS  Google Scholar 

  49. Hanada, T. et al. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 19, 437–450 (2003).

    Article  CAS  Google Scholar 

  50. Geyer, M. & Peterlin, B.M. Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS Lett. 496, 91–95 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.P. Moore and K.A. Smith (Weill Medical College of Cornell University, New York) for discussions. Supported by the National Institutes of Health (AI057530 and AI057653 to A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cerutti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

p17 does not penetrate in B cells in vivo. (PDF 823 kb)

Supplementary Fig. 2

Low concentrations of Nef are sufficient to enter B cells and inhibit TD CSR and Ig secretion. (PDF 101 kb)

Supplementary Fig. 3

Low concentrations of Nef are sufficient to inhibit CD40 signaling through NF-κB and IL-4 signaling through STAT6 in B cells. (PDF 181 kb)

Supplementary Fig. 4

Nef suppresses TD CSR and antibody production in bystander B cells. (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, X., He, B., Chiu, A. et al. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat Immunol 7, 302–310 (2006). https://doi.org/10.1038/ni1302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing