Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1

Abstract

T cell receptor engagement activates p21-activated kinase 1 (PAK1) through a LAT–SLP-76–Nck–Vav-Rac–dependent pathway. A second independent pathway involving a GIT-PIX-PAK1 trimolecular complex is also activated by T cell receptor ligation. Here we show a Vav-independent pathway exists that leads to PAK1 activation. In addition, PAK1, PIX and GIT1 were recruited to the T cell–antigen-presenting cell contact site independently of SLP-76 and Vav1. PAK1 recruitment to the T cell–antigen-presenting cell interface required interaction with PIX, which also led to optimal PLC-γ1 activation and T cell receptor–dependent transcriptional responses. These data indicate that a pathway involving the GIT-PIX-PAK1 complex has a crucial function in PAK1 activation by recruiting PAK1 to the immunological synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vav-dependent and Vav-independent activation of PAK1 after TCR stimulation.
Figure 2: Differential requirement for Vav1 in Rac and Cdc42 activation after TCR stimulation.
Figure 3: Recruitment of the PBD of PAK1 to the T cell–APC contact site.
Figure 4: Recruitment of PAK1 to the T cell–APC contact site.
Figure 5: PAK1 is recruited to the T cell–APC contact site independently of SLP-76 and Vav.
Figure 6: The recruitment of PIX and GIT to T cell–APC contact site is independent of SLP-76 and Vav.
Figure 7: Recruitment of GFP-PAK1 to the T cell–APC contact site is mediated by its interaction with PIX.
Figure 8: Expression of SH3*-βPIX inhibits TCR-induced PLC-γ1 activation and the transcriptional response.

Similar content being viewed by others

References

  1. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  2. Tomlinson, M.G., Lin, J. & Weiss, A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol. Today 21, 584–591 (2000).

    Article  CAS  Google Scholar 

  3. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    Article  CAS  Google Scholar 

  4. Yablonski, D., Kane, L.P., Qian, D. & Weiss, A.A. Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).

    Article  CAS  Google Scholar 

  5. Chu, P. et al. Systematic identification of regulatory proteins critical for T-cell activation. J. Biol. 2, 21 (2003).

    Article  Google Scholar 

  6. Chu, P.C. et al. A novel role for p21-activated protein kinase 2 in T cell activation. J. Immunol. 172, 7324–7334 (2004).

    Article  CAS  Google Scholar 

  7. Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003).

    Article  CAS  Google Scholar 

  8. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  9. Jacobelli, J., Andres, P.G., Boisvert, J. & Krummel, M.F. New views of the immunological synapse: variations in assembly and function. Curr. Opin. Immunol. 16, 345–352 (2004).

    Article  CAS  Google Scholar 

  10. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  Google Scholar 

  11. Montoya, M.C. et al. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat. Immunol. 3, 159–168 (2002).

    Article  CAS  Google Scholar 

  12. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    Article  CAS  Google Scholar 

  13. Ku, G.M., Yablonski, D., Manser, E., Lim, L. & Weiss, A.A. PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J. 20, 457–465 (2001).

    Article  CAS  Google Scholar 

  14. Manser, E., Leung, T., Salihuddin, H., Zhao, Z.S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  CAS  Google Scholar 

  15. DeFranco, A.L. Vav and the B cell signalosome. Nat. Immunol. 2, 482–484 (2001).

    Article  CAS  Google Scholar 

  16. Tybulewicz, V.L., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).

    Article  CAS  Google Scholar 

  17. Crespo, P., Schuebel, K.E., Ostrom, A.A., Gutkind, J.S. & Bustelo, X.R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  Google Scholar 

  18. Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17, 1346–1353 (1997).

    Article  CAS  Google Scholar 

  19. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360–1368 (2003).

    Article  CAS  Google Scholar 

  20. Liu, S.K., Fang, N., Koretzky, G.A. & McGlade, C.J. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    Article  CAS  Google Scholar 

  21. Bagrodia, S., Taylor, S.J., Jordon, K.A., Van Aelst, L. & Cerione, R.A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633–23636 (1998).

    Article  CAS  Google Scholar 

  22. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).

    Article  CAS  Google Scholar 

  23. Zhao, Z.S., Manser, E. & Lim, L. Interaction between PAK and Nck: a template for Nck targets and role of PAK autophosphorylation. Mol. Cell. Biol. 20, 3906–3917 (2000).

    Article  CAS  Google Scholar 

  24. Premont, R.T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082–14087 (1998).

    Article  CAS  Google Scholar 

  25. Bagrodia, S. et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22393–22400 (1999).

    Article  CAS  Google Scholar 

  26. Premont, R.T., Claing, A., Vitale, N., Perry, S.J. & Lefkowitz, R.J. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275, 22373–22380 (2000).

    Article  CAS  Google Scholar 

  27. Turner, C.E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  28. Turner, C.E., West, K.A. & Brown, M.C. Paxillin-ARF GAP signaling and the cytoskeleton. Curr. Opin. Cell Biol. 13, 593–599 (2001).

    Article  CAS  Google Scholar 

  29. Natarajan, K., Yin, G. & Berk, B.C. Scaffolds direct Src-specific signaling in response to angiotensin II: new roles for Cas and GIT1. Mol. Pharmacol. 65, 822–825 (2004).

    Article  CAS  Google Scholar 

  30. Zakaria, S. et al. Differential regulation of TCR-mediated gene transcription by Vav family members. J. Exp. Med. 199, 429–434 (2004).

    Article  CAS  Google Scholar 

  31. Wu, J., Motto, D.G., Koretzky, G.A. & Weiss, A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4, 593–602 (1996).

    Article  CAS  Google Scholar 

  32. Benard, V., Bohl, B.P. & Bokoch, G.M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  Google Scholar 

  33. Kraynov, V.S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  Google Scholar 

  34. Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).

    Article  CAS  Google Scholar 

  35. King, C.C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).

    Article  CAS  Google Scholar 

  36. Chong, C., Tan, L., Lim, L. & Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 276, 17347–17353 (2001).

    Article  CAS  Google Scholar 

  37. Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  Google Scholar 

  38. Kim, H.K. et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65, 435–441 (1991).

    Article  CAS  Google Scholar 

  39. Fraser, J.D., Newton, M.E. & Weiss, A. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J. Exp. Med. 175, 1131–1134 (1992).

    Article  CAS  Google Scholar 

  40. Shapiro, V.S., Truitt, K.E., Imboden, J.B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell. Biol. 17, 4051–4058 (1997).

    Article  CAS  Google Scholar 

  41. Daniels, R.H., Hall, P.S. & Bokoch, G.M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).

    Article  CAS  Google Scholar 

  42. Loo, T.H., Ng, Y.W., Lim, L. & Manser, E. GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol. Cell. Biol. 24, 3849–3859 (2004).

    Article  CAS  Google Scholar 

  43. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat. Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  44. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  Google Scholar 

  45. Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89 (2005).

    Article  CAS  Google Scholar 

  46. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  Google Scholar 

  47. Weiss, A. & Stobo, J.D. Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J. Exp. Med. 160, 1284–1299 (1984).

    Article  CAS  Google Scholar 

  48. Yablonski, D., Kuhne, M.R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    Article  CAS  Google Scholar 

  49. Cao, Y. et al. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J. 21, 4809–4819 (2002).

    Article  CAS  Google Scholar 

  50. Williams, B.L. et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399 (1998).

    Article  CAS  Google Scholar 

  51. Kuhne, M.R., Ku, G. & Weiss, A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J. Biol. Chem. 275, 2185–2190 (2000).

    Article  CAS  Google Scholar 

  52. Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P.L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol. 14, 917–922 (2004).

    Article  CAS  Google Scholar 

  53. Shapiro, V.S., Mollenauer, M.N., Greene, W.C. & Weiss, A. c-rel regulation of IL-2 gene expression may be mediated through activation of AP-1. J. Exp. Med. 184, 1663–1669 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Defranco, M. Krummel, T. Brdicka and S. Levin for reading this manuscript and for comments, and J. Jacobelli for helping with analysis of microscopy data for some of these studies. Supported in part by the National Cancer Institute (CA72531 to A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effects of Vav-C on endogenous Cdc42 activation and PAK in vitro kinase assay. (PDF 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phee, H., Abraham, R. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat Immunol 6, 608–617 (2005). https://doi.org/10.1038/ni1199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing