Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc

Abstract

Chromosomal translocations involving immunoglobulin heavy chain (Igh) switch regions and an oncogene such as Myc represent initiating events in the development of many B cell malignancies. These translocations are widely thought to result from aberrant class-switch recombination. To test this model, we measured translocations in mice deficient in activation-induced cytidine deaminase (AID) that lack class-switch recombination. We found that AID made no measurable contribution to the generation of initial translocations, indicating that the intrinsic fragility of the switch regions or a pathway unrelated to AID is responsible for these translocations. In contrast, the outgrowth of translocation-positive cells was dependent on AID, raising the possibility that AID is important in tumor progression, perhaps by virtue of its mutagenic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and detection of translocations between the Igh S region and Myc during plasmacytomagenesis.
Figure 2: Dual effect of AID on translocations.
Figure 3: Detection of translocations between the Igh S region and Myc in Aicda+/+ and Aicda−/− mice.
Figure 4: Breakpoints of Igh-Myc translocations.

Similar content being viewed by others

References

  1. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462, 247–253 (2000).

    Article  CAS  Google Scholar 

  2. Willis, T.G. & Dyer, M.J. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96, 808–822 (2000).

    CAS  PubMed  Google Scholar 

  3. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  CAS  Google Scholar 

  4. Lieber, M.R. Warner-Lambert/Parke-Davis Award Lecture. Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. Am. J. Pathol. 153, 1323–1332 (1998).

    Article  CAS  Google Scholar 

  5. Bergsagel, P.L. & Kuehl, W.M. Chromosome translocations in multiple myeloma. Oncogene 20, 5611–5622 (2001).

    Article  CAS  Google Scholar 

  6. Mills, K.D., Ferguson, D.O. & Alt, F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  Google Scholar 

  7. Vanasse, G.J. et al. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J. Clin. Invest. 103, 1669–1675 (1999).

    Article  CAS  Google Scholar 

  8. Petiniot, L.K. et al. Recombinase-activating gene (RAG) 2-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Proc. Natl. Acad. Sci. USA 97, 6664–6669 (2000).

    Article  CAS  Google Scholar 

  9. Difilippantonio, M.J. et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J. Exp. Med. 196, 469–480 (2002).

    Article  CAS  Google Scholar 

  10. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002).

    Article  CAS  Google Scholar 

  11. Gladdy, R.A. et al. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell 3, 37–50 (2003).

    Article  CAS  Google Scholar 

  12. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  13. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  14. Wuerffel, R.A., Du, J., Thompson, R.J. & Kenter, A.L. immunoglobulin Sg3 DNA-specific double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J. Immunol. 159, 4139–4144 (1997).

    CAS  PubMed  Google Scholar 

  15. Kenter, A. & Wuerffel, R. Immunoglobulin switch recombination may occur by a DNA end-joining mechanism. Ann. NY Acad. Sci. 870, 206–217 (1999).

    Article  CAS  Google Scholar 

  16. Petersen, S. et al. AID is required to initiate Nbs1/g-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  Google Scholar 

  17. Catalan, N. et al. The block in immunoglobulin class switch recombination caused by activation-induced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch m region. J. Immunol. 171, 2504–2509 (2003).

    Article  CAS  Google Scholar 

  18. Rush, J.S., Fugmann, S.D. & Schatz, D.G. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to Sm in immunoglobulin class switch recombination. Int. Immunol. 16, 549–557 (2004).

    Article  CAS  Google Scholar 

  19. Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  Google Scholar 

  20. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  21. Honjo, T., Muramatsu, M. & Fagarasan, S. AID: how does it aid antibody diversity? Immunity 20, 659–668 (2004).

    Article  CAS  Google Scholar 

  22. Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D. & Scharff, M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1–11 (2004).

    Article  Google Scholar 

  23. Potter, M. & Wiener, F. Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13, 1681–1697 (1992).

    Article  CAS  Google Scholar 

  24. Potter, M. Neoplastic development in plasma cells. Immunol. Rev. 194, 177–195 (2003).

    Article  CAS  Google Scholar 

  25. Potter, M. & MacCardle, R.C. Histology of developing plasma cell neoplasia induced by mineral oil in Balb/C mice. J. Natl. Cancer Inst. 33, 497–515 (1964).

    CAS  PubMed  Google Scholar 

  26. Shacter, E., Arzadon, G.K. & Williams, J. Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice: inhibition by indomethacin. Blood 80, 194–202 (1992).

    CAS  PubMed  Google Scholar 

  27. Hinson, R.M., Williams, J.A. & Shacter, E. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc. Natl. Acad. Sci. USA 93, 4885–4890 (1996).

    Article  CAS  Google Scholar 

  28. Janz, S., Muller, J., Shaughnessy, J. & Potter, M. Detection of recombinations between c-myc and immunoglobulin switch a in murine plasma cell tumors and preneoplastic lesions by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 90, 7361–7365 (1993).

    Article  CAS  Google Scholar 

  29. Muller, J.R., Jones, G.M., Potter, M. & Janz, S. Detection of immunoglobulin/c-myc recombinations in mice that are resistant to plasmacytoma induction. Cancer Res. 56, 419–423 (1996).

    CAS  PubMed  Google Scholar 

  30. Muller, J.R., Jones, G.M., Janz, S. & Potter, M. Migration of cells with immunoglobulin/c-myc recombinations in lymphoid tissues of mice. Blood 89, 291–296 (1997).

    CAS  PubMed  Google Scholar 

  31. Roschke, V., Kopantzev, E., Dertzbaugh, M. & Rudikoff, S. Chromosomal translocations deregulating c-myc are associated with normal immune responses. Oncogene 14, 3011–3016 (1997).

    Article  CAS  Google Scholar 

  32. Ramiro, A.R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    Article  CAS  Google Scholar 

  33. Potter, M. Experimental plasmacytomagenesis in mice. Hematol. Oncol. Clin. North Am. 11, 323–347 (1997).

    Article  CAS  Google Scholar 

  34. Ferguson, D.O. & Alt, F.W. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20, 5572–5579 (2001).

    Article  CAS  Google Scholar 

  35. Kataoka, T., Takeda, S. & Honjo, T. Escherichia coli extract-catalyzed recombination in switch regions of mouse immunoglobulin genes. Proc. Natl. Acad. Sci. USA 80, 2666–2670 (1983).

    Article  CAS  Google Scholar 

  36. Baar, J. & Shulman, M.J. The immunoglobulin heavy chain switch region is a hotspot for insertion of transfected DNA. J. Immunol. 155, 1911–1920 (1995).

    CAS  PubMed  Google Scholar 

  37. Stavnezer, J. Immunoglobulin class switching. Curr. Opin. Immunol. 8, 199–205 (1996).

    Article  CAS  Google Scholar 

  38. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).

    Article  CAS  Google Scholar 

  39. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  Google Scholar 

  40. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  Google Scholar 

  41. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  42. Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  Google Scholar 

  43. Sun, H., Yabuki, A. & Maizels, N. A human nuclease specific for G4 DNA. Proc. Natl. Acad. Sci. USA 98, 12444–12449 (2001).

    Article  CAS  Google Scholar 

  44. Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  Google Scholar 

  45. Dudley, D.D. et al. Internal IgH class switch region deletions are position-independent and enhanced by AID expression. Proc. Natl. Acad. Sci. USA 99, 9984–9989 (2002).

    Article  CAS  Google Scholar 

  46. Evan, G.I. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44–49 (1993).

    Article  CAS  Google Scholar 

  47. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  Google Scholar 

  48. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  Google Scholar 

  49. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  Google Scholar 

  50. Papavasiliou, F.N. & Schatz, D.G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  Google Scholar 

  51. Bross, L., Muramatsu, M., Kinoshita, K., Honjo, T. & Jacobs, H. DNA double-strand breaks: prior to but not sufficient in targeting hypermutation. J. Exp. Med. 195, 1187–1192 (2002).

    Article  CAS  Google Scholar 

  52. Papavasiliou, F.N. & Schatz, D.G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198 (2002).

    Article  CAS  Google Scholar 

  53. Zan, H., Wu, X., Komori, A., Holloman, W.K. & Casali, P. AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity 18, 727–738 (2003).

    Article  CAS  Google Scholar 

  54. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside immunoglobulin loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  Google Scholar 

  55. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of immunoglobulin genes. Science 280, 1750–1752 (1998).

    Article  CAS  Google Scholar 

  56. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  Google Scholar 

  57. Gordon, M.S., Kanegai, C.M., Doerr, J.R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Igb, CD79b) and mb1 (Iga, CD79a). Proc. Natl. Acad. Sci. USA 100, 4126–4131 (2003).

    Article  CAS  Google Scholar 

  58. Wang, C.L., Harper, R.A. & Wabl, M. Genome-wide somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 7352–7356 (2004).

    Article  CAS  Google Scholar 

  59. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  Google Scholar 

  60. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  Google Scholar 

  61. Kamata, T. et al. Increased frequency of surface IgA-positive plasma cells in the intestinal lamina propria and decreased IgA excretion in hyper IgA (HIGA) mice, a murine model of IgA nephropathy with hyperserum IgA. J. Immunol. 165, 1387–1394 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Honjo for AID-deficient mice; E. Corbett for help with cytospins; R. Herlands and J. Williams for help with microscopy; G. Tokmoulina for help with cell sorting; M. Shlomchik, members of his laboratory and members of the Schatz group for discussions; S. Fugmann for critically reading the manuscript; and the W.M. Keck Facility at Yale Medical School for DNA sequencing services. Supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G Schatz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence of translocation junctions. (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unniraman, S., Zhou, S. & Schatz, D. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nat Immunol 5, 1117–1123 (2004). https://doi.org/10.1038/ni1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing