Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes

A Corrigendum to this article was published on 01 November 2004

Abstract

Although autoimmune diseases can be initiated by immunization with a single antigen, it is not clear whether a single self antigen is essential for the initiation and, perhaps, the perpetuation of spontaneous autoimmunity. Some studies have suggested that insulin may represent an essential autoantigen in type 1 diabetes. Here we show that unlike tolerance to glutamic acid decarboxylase, tolerance to transgenically overexpressed preproinsulin 2 substantially reduced the onset and severity of type 1 diabetes in nonobese diabetic mice. However, some mice still developed type 1 diabetes, suggesting that insulin is a key, but not absolutely essential, autoantigen. The results are consistent with the idea that the human IDDM2 locus controls susceptibility to type 1 diabetes by regulating intrathymic preproinsulin expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of PPIns2 transgenic mice.
Figure 2: Metabolic characterization of PPIns2 transgenic mice.
Figure 3: Insulitis and diabetes in PPIns2 transgenic versus control mice.
Figure 4: Insulin-specific T cell response.
Figure 5: Spontaneous anti-insulin immune response and response to unrelated autoantigen.
Figure 6: Dominant versus recessive tolerance.

Similar content being viewed by others

References

  1. Jaeckel, E., Klein, L., Martin-Orozco, N. & von Boehmer, H. Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J. Exp. Med. 197, 1635–1644 (2003).

    Article  CAS  Google Scholar 

  2. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75 (1993).

    Article  CAS  Google Scholar 

  3. Kaufman, D.L. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  Google Scholar 

  4. Yoon, J.W. et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284, 1183–1187 (1999).

    Article  CAS  Google Scholar 

  5. Gottlieb, P.A. & Eisenbarth, G.S. Insulin-specific tolerance in diabetes. Clin. Immunol. 102, 2–11 (2002).

    Article  CAS  Google Scholar 

  6. Palmer, J.P. et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222, 1337–1339 (1983).

    Article  CAS  Google Scholar 

  7. Yu, L. et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc. Natl. Acad. Sci. USA 97, 1701–1706 (2000).

    Article  CAS  Google Scholar 

  8. Verge, C.F. et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45, 926–933 (1996).

    Article  CAS  Google Scholar 

  9. Bonifacio, E. et al. International Workshop on Lessons From Animal Models for Human Type 1 Diabetes: identification of insulin but not glutamic acid decarboxylase or IA-2 as specific autoantigens of humoral autoimmunity in nonobese diabetic mice. Diabetes 50, 2451–2458 (2001).

    Article  CAS  Google Scholar 

  10. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  11. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  12. Chentoufi, A.A. & Polychronakos, C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes 51, 1383–1390 (2002).

    Article  CAS  Google Scholar 

  13. Wegmann, D.R., Norbury-Glaser, M. & Daniel, D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur. J. Immunol. 24, 1853–1857 (1994).

    Article  CAS  Google Scholar 

  14. Daniel, D. & Wegmann, D.R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl. Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  Google Scholar 

  15. Atkinson, M.A., Maclaren, N.K. & Luchetta, R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 39, 933–937 (1990).

    Article  CAS  Google Scholar 

  16. Muir, A. et al. Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-γ transcription. J. Clin. Invest. 95, 628–634 (1995).

    Article  CAS  Google Scholar 

  17. Gottlieb, P.A. et al. Insulin treatment prevents diabetes mellitus but not thyroiditis in RT6-depleted diabetes resistant BB/Wor rats. Diabetologia 34, 296–300 (1991).

    Article  CAS  Google Scholar 

  18. Coon, B., An, L.L., Whitton, J.L. & von Herrath, M.G. DNA immunization to prevent autoimmune diabetes. J. Clin. Invest. 104, 189–194 (1999).

    Article  CAS  Google Scholar 

  19. Zhang, Z.J., Davidson, L., Eisenbarth, G. & Weiner, H.L. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc. Natl. Acad. Sci. USA 88, 10252–10256 (1991).

    Article  CAS  Google Scholar 

  20. Moriyama, H. et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc. Natl. Acad. Sci. USA 100, 10376–10381 (2003).

    Article  CAS  Google Scholar 

  21. Thebault-Baumont, K. et al. Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J. Clin. Invest. 111, 851–857 (2003).

    Article  CAS  Google Scholar 

  22. French, M.B. et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46, 34–39 (1997).

    Article  CAS  Google Scholar 

  23. Steptoe, R.J., Ritchie, J.M. & Harrison, L.C. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J. Clin. Invest. 111, 1357–1363 (2003).

    Article  CAS  Google Scholar 

  24. Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113, 451–463 (2004).

    Article  CAS  Google Scholar 

  25. Semana, G., Gausling, R., Jackson, R.A. & Hafler, D.A. T cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects. J. Autoimmun. 12, 259–267 (1999).

    Article  CAS  Google Scholar 

  26. Hurtenbach, U. & Maurer, C. Type I diabetes in NOD mice is not associated with insulin-specific, autoreactive T cells. J. Autoimmun. 2, 151–161 (1989).

    Article  CAS  Google Scholar 

  27. Halbout, P., Briand, J.P., Becourt, C., Muller, S. & Boitard, C. T cell response to preproinsulin I and II in the nonobese diabetic mouse. J. Immunol. 169, 2436–2443 (2002).

    Article  CAS  Google Scholar 

  28. Faideau, B. et al. Expression of preproinsulin-2 gene shapes the immune response to preproinsulin in normal mice. J. Immunol. 172, 25–33 (2004).

    Article  CAS  Google Scholar 

  29. Wegmann, D.R., Gill, R.G., Norbury-Glaser, M., Schloot, N. & Daniel, D. Analysis of the spontaneous T cell response to insulin in NOD mice. J. Autoimmun. 7, 833–843 (1994).

    Article  CAS  Google Scholar 

  30. Chen, W. et al. Evidence that a peptide spanning the B-C junction of proinsulin is an early autoantigen epitope in the pathogenesis of type 1 diabetes. J. Immunol. 167, 4926–4935 (2001).

    Article  CAS  Google Scholar 

  31. Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 187, 177–183 (1998).

    Article  CAS  Google Scholar 

  32. Homann, D., Dyrberg, T., Petersen, J., Oldstone, M.B. & von Herrath, M.G. Insulin in oral immune “tolerance”: a one-amino acid change in the B chain makes the difference. J. Immunol. 163, 1833–1838 (1999).

    CAS  PubMed  Google Scholar 

  33. Bot, A. et al. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 2950–5 (2001).

    Article  CAS  Google Scholar 

  34. Boitard, C., Yasunami, R., Dardenne, M. & Bach, J.F. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J. Exp. Med. 169, 1669–1680 (1989).

    Article  CAS  Google Scholar 

  35. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  36. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  37. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  Google Scholar 

  38. Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  39. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  40. Duvillie, B. et al. Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to β-cell hyperplasia in mutant mice lacking insulin. Endocrinology 143, 1530–1537 (2002).

    Article  CAS  Google Scholar 

  41. Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R.M. CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).

    Article  CAS  Google Scholar 

  42. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  Google Scholar 

  43. Wu, T.C. et al. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc. Natl. Acad. Sci. USA 92, 11671–11675 (1995).

    Article  CAS  Google Scholar 

  44. van Santen, H., Benoist, C. & Mathis, D. A cassette vector for high-level reporter expression driven by a hybrid invariant chain promoter in transgenic mice. J. Immunol. Methods 245, 133–137 (2000).

    Article  CAS  Google Scholar 

  45. Glimcher, L.H., Schroer, J.A., Chan, C. & Shevach, E.M. Fine specificity of cloned insulin-specific T cell hybridomas: evidence supporting a role for tertiary conformation. J. Immunol. 131, 2868–2874 (1983).

    CAS  PubMed  Google Scholar 

  46. Winter, J., Lilie, H. & Rudolph, R. Renaturation of human proinsulin–a study on refolding and conversion to insulin. Anal. Biochem. 310, 148–155 (2002).

    Article  CAS  Google Scholar 

  47. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  Google Scholar 

  48. Tarbell, K.V. et al. CD4+ T Cells from glutamic acid decarboxylase (GAD)65-specific T cell receptor transgenic mice are not diabetogenic and can delay diabetes transfer. J. Exp. Med. 196, 481–492 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Anderson (Joslin Diabetes Center, Boston, Massachusetts) for helping to determine the insulin autoantibody titers; R.N. Smith (Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts) for the evaluation of histological slides; H. van Santen for providing the modified invariant chain promoter; and Xiaoyan Li for technical support. Culture filtrate protein was provided by the College of Veterinary Medicine and Biomedical Sciences of the University of Colorado, produced with funds from the National Institutes of Health, National Institute of Allergy and Infectious Diseases (contract NO1-AI-75320; Tuberculosis Research and Vaccine Testing). Supported in part by the Koerber Foundation (Hamburg, Germany), Juvenile Diabetes Research Foundation (9-1998-1005 to H.v.B.), Juvenile Diabetes Research Foundation Center for Islet Cell Transplantation at Harvard (281541 to H.v.B., E.J. and M.A.L.) and German Research Foundation (JA977/1-1 to E.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald von Boehmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of transgenic fusion protein. (PDF 164 kb)

Supplementary Fig. 2

Islet architecture. (PDF 141 kb)

Supplementary Fig. 3

Non diabetic PPIns2 transgenic mice still contain insulin producing β-cells. (PDF 82 kb)

Supplementary Fig. 4

Intracellular cytokine staining of insulin-reactive T cells. (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeckel, E., Lipes, M. & von Boehmer, H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5, 1028–1035 (2004). https://doi.org/10.1038/ni1120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1120

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing