Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity

This article has been updated

Abstract

Binding of antigen to the B cell receptor induces a calcium response, which is required for proliferation and antibody production. CD22, a B cell surface protein, inhibits this signal through mechanisms that have been obscure. We report here that CD22 augments calcium efflux after B cell receptor crosslinking. Inhibition of plasma membrane calcium-ATPase (PMCA) attenuated these effects, as did disruption by homologous recombination of the gene encoding PMCA4a and PMCA4b. PMCA coimmunoprecipitated with CD22 in an activation-dependent way. CD22 cytoplasmic tyrosine residues were required for association with PMCA and enhancement of calcium efflux. Moreover, CD22 regulation of efflux and the calcium response required the tyrosine phosphatase SHP-1. Thus, SHP-1 and PMCA provide a mechanism by which CD22, a tissue-specific negative regulator, can affect calcium responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Negative regulation of Ca2+ signaling by CD22 is reversed by blocking of PMCA function.
Figure 2: CD22 enhances Ca2+ extrusion by the PMCA.
Figure 3: PMCA interaction with CD22 requires BCR stimulation.
Figure 4: Tyrosine phosphorylation of CD22 is required for the interaction between CD22 and PMCA.
Figure 5: SHP-1 is necessary for negative regulation of Ca2+ efflux by CD22.
Figure 6: Both CD22 and PMCA4 contribute to Ca2+ efflux from primary B cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 16 May 2004

    appended aop PDF with erratum PDF (will be corrected for print issue), and placed footnote in XML at all occurrences of Figure 5

Notes

  1. *Note: In the version of this article originally published online, the key for Figure 5c and d was labeled incorrectly. The correct labels are "SHIPKO empty" and "SHIPKO CD22+." This error has been corrected for the HTML and print versions of this article.

References

  1. Winslow, M.M., Neilson, J.R. & Crabtree, G.R. Calcium signalling in lymphocytes. Curr. Opin. Immunol. 15, 299–307 (2003).

    Article  CAS  Google Scholar 

  2. Taylor, C.W. Controlling calcium entry. Cell 111, 767–769 (2002).

    Article  CAS  Google Scholar 

  3. Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  Google Scholar 

  4. Snitsarev, V.A. & Taylor, C.W. Overshooting cytosolic Ca2+ signals evoked by capacitative Ca2+ entry result from delayed stimulation of a plasma membrane Ca2+ pump. Cell Calcium 25, 409–417 (1999).

    Article  CAS  Google Scholar 

  5. Klishin, A., Sedova, M. & Blatter, L.A. Time-dependent modulation of capacitative Ca2+ entry signals by plasma membrane Ca2+ pump in endothelium. Am. J. Physiol. 274, C1117–1128 (1998).

    Article  CAS  Google Scholar 

  6. Scharff, O., Foder, B. & Skibsted, U. Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells. Biochim. Biophys. Acta 730, 295–305 (1983).

    Article  CAS  Google Scholar 

  7. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  Google Scholar 

  8. Otipoby, K.L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  Google Scholar 

  9. O'Keefe, T.L., Williams, G.T., Batista, F.D. & Neuberger, M.S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med. 189, 1307–1313 (1999).

    Article  CAS  Google Scholar 

  10. O'Keefe, T.L., Williams, G.T., Davies, S.L. & Neuberger, M.S. Hyperresponsive B cells in CD22-deficient mice. Science 274, 798–801 (1996).

    Article  CAS  Google Scholar 

  11. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M.C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  Google Scholar 

  12. Nadler, M.J., McLean, P.A., Neel, B.G. & Wortis, H.H. B cell antigen receptor-evoked calcium influx is enhanced in CD22-deficient B cell lines. J. Immunol. 159, 4233–4243 (1997).

    CAS  PubMed  Google Scholar 

  13. Schulte, R.J., Campbell, M.A., Fischer, W.H. & Sefton, B.M. Tyrosine phosphorylation of CD22 during B cell activation. Science 258, 1001–1004 (1992).

    Article  CAS  Google Scholar 

  14. Wilson, G.L., Fox, C.H., Fauci, A.S. & Kehrl, J.H. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J. Exp. Med. 173, 137–146 (1991).

    Article  CAS  Google Scholar 

  15. Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  Google Scholar 

  16. Campbell, M.A. & Klinman, N.R. Phosphotyrosine-dependent association between CD22 and protein tyrosine phosphatase 1C. Eur. J. Immunol. 25, 1573–1579 (1995).

    Article  CAS  Google Scholar 

  17. Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293–301 (1997).

    Article  CAS  Google Scholar 

  18. Blasioli, J., Paust, S. & Thomas, M.L. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J. Biol. Chem. 274, 2303–2307 (1999).

    Article  CAS  Google Scholar 

  19. Poe, J.C., Fujimoto, M., Jansen, P.J., Miller, A.S. & Tedder, T.F. CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J. Biol. Chem. 275, 17420–17427 (2000).

    Article  CAS  Google Scholar 

  20. Hashimoto, A., Hirose, K., Okada, H., Kurosaki, T. & Iino, M. Inhibitory modulation of B cell receptor-mediated Ca2+ mobilization by Src homology 2 domain-containing inositol 5′-phosphatase (SHIP). J. Biol. Chem. 274, 11203–11208 (1999).

    Article  CAS  Google Scholar 

  21. Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 195, 1199–1205 (2002).

    Article  CAS  Google Scholar 

  22. Strehler, E.E. & Zacharias, D.A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001).

    Article  CAS  Google Scholar 

  23. Philipson, K.D. & Nicoll, D.A. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000).

    Article  CAS  Google Scholar 

  24. Herscher, C.J. & Rega, A.F. On the mechanism of inhibition of the PMCa2+-ATPase by lanthanum. Ann. NY Acad. Sci. 834, 407–409 (1997).

    Article  CAS  Google Scholar 

  25. Chen, J. et al. Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J. Biol. Chem. 275, 28739–28749 (2000).

    Article  CAS  Google Scholar 

  26. DiPolo, R. Ca pump driven by ATP in squid axons. Nature 274, 390–392 (1978).

    Article  CAS  Google Scholar 

  27. Otipoby, K.L., Draves, K.E. & Clark, E.A. CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J. Biol. Chem. 276, 44315–44322 (2001).

    Article  CAS  Google Scholar 

  28. Lajas, A.I., Sierra, V., Camello, P.J., Salido, G.M. & Pariente, J.A. Vanadate inhibits the calcium extrusion in rat pancreatic acinar cells. Cell Signal. 13, 451–456 (2001).

    Article  CAS  Google Scholar 

  29. Zhang, B.X., Zhao, H., Loessberg, P. & Muallem, S. Activation of the plasma membrane Ca2+ pump during agonist stimulation of pancreatic acini. J. Biol. Chem. 267, 15419–15425 (1992).

    CAS  PubMed  Google Scholar 

  30. Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R. & Dawson, A.P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. USA 87, 2466–2470 (1990).

    Article  CAS  Google Scholar 

  31. Balasubramanyam, M. & Gardner, J.P. Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells. Cell Calcium 18, 526–541 (1995).

    Article  CAS  Google Scholar 

  32. Brandt, P., Neve, R.L., Kammesheidt, A., Rhoads, R.E. & Vanaman, T.C. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J. Biol. Chem. 267, 4376–4385 (1992).

    CAS  PubMed  Google Scholar 

  33. Liu, B.F., Xu, X., Fridman, R., Muallem, S. & Kuo, T.H. Consequences of functional expression of the plasma membrane Ca2+ pump isoform 1a. J. Biol. Chem. 271, 5536–5544 (1996).

    Article  CAS  Google Scholar 

  34. Filoteo, A.G. et al. Plasma membrane Ca2+ pump in rat brain. Patterns of alternative splices seen by isoform-specific antibodies. J. Biol. Chem. 272, 23741–23747 (1997).

    Article  CAS  Google Scholar 

  35. Caride, A.J., Filoteo, A.G., Enyedi, A., Verma, A.K. & Penniston, J.T. Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem. J. 316, 353–359 (1996).

    Article  CAS  Google Scholar 

  36. Magyar, C.E., White, K.E., Rojas, R., Apodaca, G. & Friedman, P.A. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am. J. Physiol. Renal Physiol. 283, F29–40 (2002).

    Article  CAS  Google Scholar 

  37. Schatzmann, H.J. ATP-dependent Ca++-extrusion from human red cells. Experientia 22, 364–365 (1966).

    Article  CAS  Google Scholar 

  38. Dean, W.L., Chen, D., Brandt, P.C. & Vanaman, T.C. Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J. Biol. Chem. 272, 15113–15119 (1997).

    Article  CAS  Google Scholar 

  39. Sanders, D., Brownlee, C. & Harper, J.F. Communicating with calcium. Plant Cell 11, 691–706 (1999).

    Article  CAS  Google Scholar 

  40. Bautista, D.M., Hoth, M. & Lewis, R.S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol. 541, 877–894 (2002).

    Article  CAS  Google Scholar 

  41. Monteith, G.R., Wanigasekara, Y. & Roufogalis, B.D. The plasma membrane calcium pump, its role and regulation: new complexities and possibilities. J. Pharmacol. Toxicol. Meth. 40, 183–190 (1998).

    Article  CAS  Google Scholar 

  42. Moller, J.V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996).

    Article  Google Scholar 

  43. Resink, T.J. et al. Platelet calcium-linked abnormalities in essential hypertension. Ann. NY Acad. Sci. 488, 252–265 (1986).

    Article  CAS  Google Scholar 

  44. Donnadieu, E., Bismuth, G. & Trautmann, A. Calcium fluxes in T lymphocytes. J. Biol. Chem. 267, 25864–25872 (1992).

    CAS  PubMed  Google Scholar 

  45. Balasubramanyam, M., Kimura, M., Aviv, A. & Gardner, J.P. Kinetics of calcium transport across the lymphocyte plasma membrane. Am. J. Physiol. 265, C321–327 (1993).

    Article  CAS  Google Scholar 

  46. Carafoli, E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8, 993–1002 (1994).

    Article  CAS  Google Scholar 

  47. Rapp, U.R. et al. Rapid induction of hemopoietic neoplasms in newborn mice by a rafmil/myc recombinant murine retrovirus. J. Virol. 55, 23–33 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Winding, P. & Berchtold, M.W. The chicken B cell line DT40: a novel tool for gene disruption experiments. J. Immunol. Meth. 249, 1–16 (2001).

    Article  CAS  Google Scholar 

  49. Maeda, A., Kurosaki, M., Ono, M., Takai, T. & Kurosaki, T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J. Exp. Med. 187, 1355–1360 (1998).

    Article  CAS  Google Scholar 

  50. Takata, M. et al. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13, 1341–1349 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Berland, K. Dunlap, E. Herrera, L. Jin, T. Imanishi-Kari and N. Rosenberg for discussions; E.A. Clark, D.L. Gill, M. Kurosaki and T. Kurosaki for reagents; and T. Trombley for help with some of the experiments. Supported by the National Institutes of Health (H.H.W., G.E.S. and B.G.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H Wortis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., McLean, P., Neel, B. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat Immunol 5, 651–657 (2004). https://doi.org/10.1038/ni1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing