Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes

Abstract

Individual B lymphocytes normally express immunoglobulin (Ig) proteins derived from single Ig heavy chain (H) and light chain (L) alleles. Allelic exclusion ensures monoallelic expression of Ig genes by each B cell to maintain single receptor specificity. Here we provide evidence that at later stages of B cell development, additional mechanisms may contribute to prioritizing expression of single IgH and IgL alleles. Fluorescent in situ hybridization analysis of primary splenic B cells isolated from normal and genetically manipulated mice showed that endogenous IgH, κ and λ alleles localized to different subnuclear environments after activation and had differential expression patterns. However, this differential recruitment and expression of Ig alleles was not typically seen among transformed B cell lines. These data raise the possibility that epigenetic factors help maintain the monoallelic expression of Ig.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the IgH and IgL loci.
Figure 2: Nuclear position of IgH, κ and λ genes relative to Ikaros protein and centromeric DNA clusters in activated splenic B lymphocytes.
Figure 3: RNA-FISH analysis of nuclear IgH-, Igκ- and CD45-derived transcripts generated after the activation of splenic B cells.
Figure 4: Rearrangement and RNA expression of IgH alleles in pre- and pro-B cell clones.
Figure 5: Nuclear location of productive and nonproductively rearranged IgH alleles in transformed 70Z/3 and 38C-13 cell lines.

Similar content being viewed by others

References

  1. Ohlsson, R., Tycko, B. & Sapienza, C. Monoallelic expression: 'there can only be one'. Trends Genet. 14, 435–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Honjo, T. & Alt, F. W. Immunoglobulin Genes (Academic Press, London, 1995).

    Google Scholar 

  3. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Rolink, A. & Melchers, F. Generation and regeneration of cells of the B-lymphocyte lineage. Curr. Opin. Immunol. 5, 207–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Barreto, B. & Cumano, A. Frequency and characterization of phenotypic Ig heavy chain allelically included IgM-expressing B cells in mice. J. Immunol. 164, 893–899 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Dernburg, A. F. et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85, 745–759 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell 3, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Gasser, S. M. Positions of potential: nuclear organization and gene expression. Cell 104, 639–642 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Francastel, C., Walters, M. C., Groudine, M. & Martin, D. I. K. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99, 259–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Schübeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14, 940–950 (2000).

    PubMed  PubMed Central  Google Scholar 

  15. Lundgren, M. et al. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 103, 733–743 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Georgopouos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 79, 43–156 (1994).

    Google Scholar 

  17. Sabbattini, P. et al. Binding of Ikaros to the λ5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J. 20, 2812–2822 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elenich, L. A., Ford, C. S., Collins, J. T. & Dunnick, W. A. γ 1 heavy chain transgenes are responsive to IFN-γ repression and CD40 ligation. J. Immunol. 158, 4564–4573 (1997).

    CAS  PubMed  Google Scholar 

  19. Ratcliffe, M. J. & Julius, M. H. H-2 restricted T-B cell interactions involved in polyspecific B cell responses mediated by soluble antigen. Eur. J. Immunol. 12, 634–641 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Hood, L., Grant, J. A. & Sox, H. C. Jr in Developmental Aspects of Antibody Formation and Structure (eds. Sterzl, J. & Hiha, I.) vol. 1, 283–295 (Academic Press, New York, 1969).

    Google Scholar 

  21. Bernier, G. M. & Cebra, J. J. Polypeptide chains of human γ-globulin: cellular localization by fluorescent antibody. Science 144, 1590–1591 (1964).

    Article  CAS  PubMed  Google Scholar 

  22. Zou, Y-R., Takeda, S. & Rajewsky, K. Gene targeting in the Igκ locus: efficient generation of λ chain-expressing B cells, independent of gene rearrangements in Igκ. EMBO J. 12, 811–820 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esser, C. & Radbruch, A. Immunoglobulin class switching; molecular and cellular analysis. Annu. Rev. Immunol. 8, 717–735 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, A. G., Burdet, C., Bunce, C., Merkenschlager, M. & Ceredig, R. Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int. Immunol. 7, 415–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Nelson, K. J., Haimovich, J. & Perry, R. P. Characterization of productive and sterile transcripts from the immunoglobulin heavy-chain locus: processing of μm and μs mRNA. Mol. Cell Biol. 3, 1317–1332 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lennon, G. G. & Perry, R. P. Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318, 475–478 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Lennon, G. G. & Perry, R. P. Identification of a defective mouse immunoglobulin D (diversity) element which can undergo DJH, but not VHD, recombination. Immunogenetics 30, 383–386 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Nelson, K. J., Mather, E. L. & Perry, R. P. Lipopolysaccharide-induced transcription of the κ immunoglobulin locus occurs on both alleles and is independent of methylation status. Nucleic Acids Res. 12, 1911–1923 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bridger, J. M., Boyle, S., Kill, I. R. & Bickmore, W. A. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol. 10, 149–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nemazee, D. Receptor selection in B and T Lymphocytes. Annu. Rev. Immunol. 18, 19–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kelley, D. E. & Perry, R. P. Transcriptional and posttranscriptional control of immunoglobulin mRNA production during B lymphocyte development. Nucleic Acids Res. 14, 5431–5447 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, K. J., Kanellopoulos-Langevin, C., Merwin, R. M., Sachs, D. H. & Asofsky, R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J. Immunol. 122, 549–554 (1979).

    CAS  PubMed  Google Scholar 

  33. Weiss, S. & Wu, G. E. Somatic point mutations in unrearranged immunoglobulin gene segments encoding the variable region of λ light chains. EMBO J. 6, 927–932 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu, A., Takahashi, N., Yaoita, Y. & Honjo, T. Organisation of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28, 499–506 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Mainville, C. A. et al. Deletion mapping of fifteen mouse VH gene families reveals a common organization for three Igh haplotypes. J. Immunol. 3, 1038–46 (1996).

    Google Scholar 

  36. Liu, C. P., Tucker, P. W., Mushinski, J. F. & Blattner, F.R. Mapping of heavy chain genes for mouse immunoglobulins M and D. Science 209, 1348–1353 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu, H., Kitamura, D. & Rajewsky, K. B cell development regulated by gene rearrangement: arrest of maturation by membrane-bound Dμ protein and selection of DH element reading frames. Cell 65, 47–54 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for supplying mouse genomic probes; S. Smale for anti-Ikaros sera; G. Klaus for anti-IgM; J. Roes for Cμ-Cδ probes; P. Brodeur for VHJ558 and VHS107 probes; E. Severinson, L. Ström, V. Buckle and N. Brockdorff for helpful discussions; and G. Reed, R. Newton and I. Devonish for photographic and secretarial assistance. Supported by the Medical Research Council, the Wellcome Trust (J. S. and D. G.) and the Royal Society (K. E. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda G. Fisher.

Supplementary information

Web Figure 1.

Measurement of allelic distances between IgH loci and γ-satellite DNA. (a) Sequential images (ordered from the top left to right, middle left to right, lower left to right) of optical sections through the nucleus of a 4-day-activated mouse B cell nucleus (Z series, 0.2 µm separation) in which the location of IgH alleles (green) and γ-satellite DNA (red) is shown. Data from 54 individual cells was subjected to 3D reconstruction (using Metamorph Imaging series 4.5, Universal Imaging Corporation) to allow 3-D distances between pixels in X, Y and Z planes to be estimated. (b,c) Intranuclear distances (in mm) between the centroid (signal intensity weighted center) of the nearest γ-satellite signal and the center of each IgH allele (maximum intensity). (b) Distribution analysis in which the distance of the nearest (allele 1) and furthest (allele 2) IgH allele from centromeric DNA, is given. (c) Distances were plotted for each individual cell. (GIF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skok, J., Brown, K., Azuara, V. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat Immunol 2, 848–854 (2001). https://doi.org/10.1038/ni0901-848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing