Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival

Abstract

The association of trans-acting T cell factors (TCFs) or lymphoid enhancer factor 1 (LEF-1) with their coactivator β-catenin mediates transient transcriptional responses to extracellular Wnt signals. We show here that T cell maturation depends on the presence of the β-catenin–binding domain in TCF-1. This domain is necessary to mediate the survival of immature CD4+CD8+ double-positive (DP) thymocytes. Accelerated spontaneous thymocyte death in the absence of TCF-1 correlates with aberrantly low expression of the anti-apoptotic protein Bcl-xL. Increasing anti-apoptotic effectors in thymocytes by the use of a Bcl-2 transgene rescued TCF-1–deficient DP thymocytes from apoptosis. Thus, TCF-1, upon association with β-catenin, transiently ensures the survival of immature T cells, which enables them to generate and edit T cell receptor (TCR) α chains and attempt TCR-mediated positive selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCF-1 isoforms, domains and Tg mice.
Figure 2: Comparable abundance of p45 and p33 isoforms in Tg mice.
Figure 3: The β-catenin domain in TCF-1 was required for T cell maturation.
Figure 4: Cell division among TCF-1–deficient thymocyte subsets.
Figure 5: Spontaneous apoptosis in the absence of TCF-1: restoration in p45-Tg mice.
Figure 6: The absence of TCF-1 did not affect Bcl-2 expression.
Figure 7: Immunoblot analysis of Bcl-2 family proteins in TCF-1–deficient thymocytes.
Figure 8: Enforced Bcl-2 expression in TCF-1–deficient mice restored thymocyte survival.

Similar content being viewed by others

References

  1. Surh, C. D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

    Article  CAS  Google Scholar 

  2. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  3. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  4. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  Google Scholar 

  5. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    Article  CAS  Google Scholar 

  6. Outram, S. V., Varas, A., Pepicelli, C. V. & Crompton, T. Hedgehog signaling regulates differentiation from double-negative to double positive thymocytes. Immunity 13, 187–197 (2000).

    Article  CAS  Google Scholar 

  7. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    Article  CAS  Google Scholar 

  8. Schilham, M. W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161, 3984–3991 (1998).

    CAS  PubMed  Google Scholar 

  9. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRa gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  Google Scholar 

  10. van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  Google Scholar 

  11. Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor a enhancer function. Genes Dev. 5, 880–894 (1991).

    Article  CAS  Google Scholar 

  12. van de Wetering, M., Gastrop, J., Korinek, V. & Clevers, H. Extensive alternative splicing and dual promoter usage generate TCF-1 protein isoforms with differential transcription control properties. Mol. Cell. Biol. 16, 745–752 (1996).

    Article  CAS  Google Scholar 

  13. Hsu, S.-H., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18, 4807–4818 (1998).

    Article  CAS  Google Scholar 

  14. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  Google Scholar 

  15. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  16. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  Google Scholar 

  17. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  18. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science 285, 1923–1926 (1999).

    Article  CAS  Google Scholar 

  19. Oosterwegel, M. et al. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-e and TCR-a enhancers. J. Exp. Med. 173, 1133–1142 (1991).

    Article  CAS  Google Scholar 

  20. Pircher, H. et al. T cell tolerance to Mlsa encoded antigens in T cell receptor Vb8.1 transgenic mice. EMBO J. 8, 719–727 (1989).

    Article  CAS  Google Scholar 

  21. Oltvai, Z. N. & Korsmeyer, S. J. Checkpoints of dueling dimers foil death wishes. Cell 79, 189–192 (1994).

    Article  CAS  Google Scholar 

  22. Linette, G. P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).

    Article  CAS  Google Scholar 

  23. Strasser, A., Harris, A. W. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).

    Article  CAS  Google Scholar 

  24. Print, C. G. et al. Apoptosis regulator Bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc. Natl Acad. Sci. USA 95, 12424–12431 (1998).

    Article  CAS  Google Scholar 

  25. Grillot, D. A. M., Merino, R. & Nunez, G. Bcl-xL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182, 1973–1983 (1995).

    Article  CAS  Google Scholar 

  26. Ma, A. et al. Bcl-x regulates the survival of double-positive thymocytes. Proc. Natl Acad. Sci. USA 92, 4763–4767 (1995).

    Article  CAS  Google Scholar 

  27. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  28. Knudson, C. M. & Korsmeyer, S. J. Bcl-2 and Bax function independently to regulate cell death. Nature Genet. 16, 358–363 (1997).

    Article  CAS  Google Scholar 

  29. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  Google Scholar 

  30. Chao, D. T. et al. Bcl-xL and Bcl-2 repress a common pathway of cell death. J. Exp. Med. 182, 821–828 (1995).

    Article  CAS  Google Scholar 

  31. O'Reilly, L. A., Huang, D. C. & Strasser, A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 15, 6970–6990 (1996).

    Article  Google Scholar 

  32. Mazel, S., Burtrum, D. & Petrie, H. T. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J. Exp. Med. 183, 2219–2226 (1996).

    Article  CAS  Google Scholar 

  33. Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).

    Article  CAS  Google Scholar 

  34. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  35. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  Google Scholar 

  36. Held, W., Kunz, B., Lowin-Kropf, B., van de Wetering, M. & Clevers, H. Clonal acquisition of the Ly49A NK cell receptor is dependent on the trans-acting factor TCF-1. Immunity 11, 433–442 (1999).

    Article  CAS  Google Scholar 

  37. Staal, F. J. Z. et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur. J. Immunol. 31, 285–293 (2001).

    Article  CAS  Google Scholar 

  38. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking TCF-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  Google Scholar 

  39. He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  40. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  41. van Genderen, C. et al. Development of several organs that require inductive epithelia-mesenchymal interactions is impaired in LEF-1 deficient mice. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  Google Scholar 

  42. Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13, 15–24 (2000).

    Article  CAS  Google Scholar 

  43. Sun, Z. et al. Requirement for RORg in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  44. Sentman, C. L., Shutter, J. R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S. J. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  Google Scholar 

  45. Strasser, A., Harris, A. W., Huang, D. C., Krammer, P. H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

    Article  CAS  Google Scholar 

  46. Newton, K., Harris, A. W. & Strasser, A. FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–941 (2000).

    Article  CAS  Google Scholar 

  47. Grillot, D. A. M. et al. Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J. Immunol. 158, 4750–4757. (1997).

    CAS  PubMed  Google Scholar 

  48. Castrop, J. et al. The human TCF-1 gene encodes a nuclear DNA-binding protein uniquely expressed in normal and neoplastic T-lineage lymphocytes. Blood 8, 3050–3059 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank P. Zaech for expert cell sorting; F. Radtke for primers; B. Kunz for assembling the transgene constructs; A. Strasser and A. Wilson for suggestions and advice; and H. R. MacDonald and J.-C. Cerottini for critical reading of the manuscript. Supported in part by a grant from the Swiss National Science Foundation (to W. H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Held.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannidis, V., Beermann, F., Clevers, H. et al. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat Immunol 2, 691–697 (2001). https://doi.org/10.1038/90623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing