Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production

Abstract

Toll-like receptors (TLRs) are pivotal in innate immunity and inflammation. Here we show that genetic deficiency in Peli1, an E3 ubiquitin ligase, attenuated the induction of proinflammatory cytokines by ligands of TLR3 and TLR4 and rendered mice resistant to septic shock. Peli1 was required for TLR3-induced activation of IκB kinase (IKK) and its 'downstream' target, transcription factor NF-κB, but was dispensable for IKK–NF-κB activation induced by several other TLRs and the interleukin 1 (IL-1) receptor. Notably, Peli1 bound to and ubiquitinated RIP1, a signaling molecule that mediates IKK activation induced by the TLR3 and TLR4 adaptor TRIF. Our findings suggest that Peli1 is a ubiquitin ligase needed for the transmission of TRIF-dependent TLR signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peli1−/− mice are resistant to LPS- and poly(I:C)-induced death.
Figure 2: Peli1 is required for TLR3- and TLR4-mediated induction of proinflammatory genes.
Figure 3: Peli1 regulates B cell activation and survival.
Figure 4: Peli1 is essential for the activation of IKK–NF-κB by TLR3.
Figure 5: Dispensable role of Peli1 in IL-1R signaling.
Figure 6: Peli1 interacts with and ubiquitinates RIP1.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  2. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  Google Scholar 

  3. Hemmi, H. & Akira, S. TLR signalling and the function of dendritic cells. Chem. Immunol. Allergy 86, 120–135 (2005).

    Article  CAS  Google Scholar 

  4. Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 560, 11–18 (2005).

    Article  CAS  Google Scholar 

  5. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  Google Scholar 

  6. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  7. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  Google Scholar 

  8. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  Google Scholar 

  9. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  Google Scholar 

  10. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  11. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003).

    Article  CAS  Google Scholar 

  12. Schauvliege, R., Janssens, S. & Beyaert, R. Pellino proteins: novel players in TLR and IL-1R signalling. J. Cell. Mol. Med. 11, 453–461 (2007).

    Article  CAS  Google Scholar 

  13. Adhikari, A., Xu, M. & Chen, Z.J. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26, 3214–3226 (2007).

    Article  CAS  Google Scholar 

  14. Grosshans, J., Schnorrer, F. & Nüsslein-Volhard, C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech. Dev. 81, 127–138 (1999).

    Article  CAS  Google Scholar 

  15. Schauvliege, R., Janssens, S. & Beyaert, R. Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett. 580, 4697–4702 (2006).

    Article  CAS  Google Scholar 

  16. Butler, M.P., Hanly, J.A. & Moynagh, P.N. Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases. J. Biol. Chem. 282, 29729–29737 (2007).

    Article  CAS  Google Scholar 

  17. Ordureau, A. et al. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem. J. 409, 43–52 (2008).

    Article  CAS  Google Scholar 

  18. Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A. & Kelliher, M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  Google Scholar 

  19. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  20. Chen, N.J. et al. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc. Natl. Acad. Sci. USA 105, 12429–12434 (2008).

    Article  CAS  Google Scholar 

  21. Ermolaeva, M.A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol. 9, 1037–1046 (2008).

    Article  CAS  Google Scholar 

  22. Pobezinskaya, Y.L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat. Immunol. 9, 1047–1054 (2008).

    Article  CAS  Google Scholar 

  23. Gohda, J., Matsumura, T. & Inoue, J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913–2917 (2004).

    Article  CAS  Google Scholar 

  24. Galanos, C.F.M. & Reutter, W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76, 5939–5943 (1979).

    Article  CAS  Google Scholar 

  25. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  Google Scholar 

  26. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  27. Dejager, L. & Libert, C. Tumor necrosis factor α mediates the lethal hepatotoxic effects of poly(I:C) in D-galactosamine-sensitized mice. Cytokine 42, 55–61 (2008).

    Article  CAS  Google Scholar 

  28. Vanguri, P. & Farber, J.M. Identification of CRG-2. An interferon-inducible mRNA predicted to encode a murine monokine. J. Biol. Chem. 265, 15049–15057 (1990).

    CAS  PubMed  Google Scholar 

  29. Pasare, C. & Medzhitov, R. Control of B cell responses by Toll-like receptors. Nature 438, 364–368 (2005).

    Article  CAS  Google Scholar 

  30. Ruprecht, C.R. & Lanzavecchia, A. TLR stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 36, 810–816 (2006).

    Article  CAS  Google Scholar 

  31. Gerondakis, S., Grumont, R.J. & Banerjee, A. Regulating B cell activation and survival in response to TLR signals. Immunol. Cell Biol. 85, 471–475 (2007).

    Article  CAS  Google Scholar 

  32. Yi, A.K., Chang, M., Peckham, D.W., Krieg, A.M. & Ashman, R.F. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J. Immunol. 160, 5898–5906 (1998).

    CAS  PubMed  Google Scholar 

  33. Vivarelli, M.S. et al. RIP links TLR4 to Akt and is essential for cell survival in response to LPS stimulation. J. Exp. Med. 200, 399–404 (2004).

    Article  CAS  Google Scholar 

  34. Jiang, Z. et al. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278, 10952–10956 (2003).

    Article  CAS  Google Scholar 

  35. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  36. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  Google Scholar 

  37. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    Article  CAS  Google Scholar 

  38. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  Google Scholar 

  39. Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    Article  CAS  Google Scholar 

  40. Jiang, Z. et al. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6–TAK1-TAB2-PKR. J. Biol. Chem. 278, 16713–16719 (2003).

    Article  CAS  Google Scholar 

  41. Kawagoe, T. et al. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J. Exp. Med. 204, 1013–1024 (2007).

    Article  CAS  Google Scholar 

  42. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    Article  CAS  Google Scholar 

  43. Kaiser, W.J. & Offermann, M.K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  Google Scholar 

  44. Xiao, G., Harhaj, E.W. & Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  Google Scholar 

  45. Reiley, W., Zhang, M. & Sun, S.-C. Tumorsuppressor negatively regulates JNK signaling pathway downstream of TNFR members. J. Biol. Chem. 279, 55161–55167 (2004).

    Article  CAS  Google Scholar 

  46. Racoosin, E.L. & Swanson, J.A. Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J. Exp. Med. 170, 1635–1648 (1989).

    Article  CAS  Google Scholar 

  47. Zhang, M. et al. Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 283, 18621–18626 (2008).

    Article  CAS  Google Scholar 

  48. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    Article  CAS  Google Scholar 

  49. Rivera-Walsh, I., Cvijic, M.E., Xiao, G. & Sun, S.C. The NF-κ B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death. J. Biol. Chem. 275, 25222–25230 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Texas Institute for Genomic Medicine for Peli1-knockout mice; R. Beyaert (Ghent University) for E-tag-fused Peli1 and mutants; J. Hiscott (McGill University) for GST-IRF3 (amino acids 380–427); V. Chau (Pennsylvania State University College of Medicine) for anti-ubiquitin; and M.K. Offermann and W.J. Kaiser (Emory University) for CMV14-3xFlag-TRIF, pCMV10-3XFlag-RIP1 and pcDNA3-myc-RIP1. Supported by the US National Institutes of Health (AI057555, AI064639 and GM84459).

Author information

Authors and Affiliations

Authors

Contributions

M.C. and W.J. designed and did the research and prepared the figures; S.-C.S. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Shao-Cong Sun.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M., Jin, W. & Sun, SC. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol 10, 1089–1095 (2009). https://doi.org/10.1038/ni.1777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing