Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential function for the GTPase TC21 in homeostatic antigen receptor signaling

Abstract

T cell antigen receptors (TCRs) and B cell antigen receptors (BCRs) transmit low-grade signals necessary for the survival and maintenance of mature cell pools. We show here that TC21, a small GTPase encoded by Rras2, interacted constitutively with both kinds of receptors. Expression of a dominant negative TC21 mutant in T cells produced a rapid decrease in cell viability, and Rras2−/− mice were lymphopenic, possibly as a result of diminished homeostatic proliferation and impaired T cell and B cell survival. In contrast, TC21 was overexpressed in several human lymphoid malignancies. Finally, the p110δ catalytic subunit of phosphatidylinositol-3-OH kinase (PI(3)K) was recruited to the TCR and BCR in a TC21-dependent way. Consequently, we propose TC21 directly links antigen receptors to PI(3)K-mediated survival pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TC21 constitutively associates with the TCR through unphosphorylated ITAMs, and it is required for T cell survival and Akt activation in vitro.
Figure 2: Rras2−/− mice have fewer peripheral T cells and B cells.
Figure 3: TC21 deficiency results in depletion of MZ B cells and prevents GC formation.
Figure 4: TC21 deficiency results in diminished survival and homeostatic proliferation of B cells and T cells.
Figure 5: TC21 is constitutively associated with the BCR.
Figure 6: TC21 is required for basal PI(3)K activity and recruitment of p110δ to antigen receptors.
Figure 7: TC21 is overexpressed in human T cell and B cell lymphomas.

Similar content being viewed by others

References

  1. Freitas, A.A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).

    Article  CAS  Google Scholar 

  2. Khaled, A.R. & Durum, S.K. Lymphocide: cytokines and the control of lymphoid homeostasis. Nat. Rev. Immunol. 2, 817–830 (2002).

    Article  CAS  Google Scholar 

  3. Seddon, B. & Zamoyska, R. Regulation of peripheral T-cell homeostasis by receptor signalling. Curr. Opin. Immunol. 15, 321–324 (2003).

    Article  CAS  Google Scholar 

  4. Woodland, R.T., Schmidt, M.R. & Thompson, C.B. BLyS and B cell homeostasis. Semin. Immunol. 18, 318–326 (2006).

    Article  CAS  Google Scholar 

  5. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  Google Scholar 

  6. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  7. Lin, J. & Weiss, A. T cell receptor signalling. J. Cell Sci. 114, 243–244 (2001).

    CAS  PubMed  Google Scholar 

  8. Rudolph, M.G., Luz, J.G. & Wilson, I.A. Structural and thermodynamic correlates of T cell signaling. Annu. Rev. Biophys. Biomol. Struct. 31, 121–149 (2002).

    Article  CAS  Google Scholar 

  9. Werlen, G. & Palmer, E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–305 (2002).

    Article  CAS  Google Scholar 

  10. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  Google Scholar 

  11. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    Article  CAS  Google Scholar 

  12. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl. Acad. Sci. USA 98, 8744–8749 (2001).

    Article  CAS  Google Scholar 

  13. Witherden, D. et al. Tetracycline-controllable selection of CD4+ T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J. Exp. Med. 191, 355–364 (2000).

    Article  CAS  Google Scholar 

  14. Lam, K.P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  Google Scholar 

  15. Kraus, M., Alimzhanov, M.B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  Google Scholar 

  16. Seddon, B., Legname, G., Tomlinson, P. & Zamoyska, R. Long-term survival but impaired homeostatic proliferation of naive T cells in the absence of p56lck. Science 290, 127–131 (2000).

    Article  CAS  Google Scholar 

  17. Seddon, B. & Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol. 169, 2997–3005 (2002).

    Article  CAS  Google Scholar 

  18. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  19. Fabre, S., Lang, V. & Bismuth, G. PI3-kinase and the control of T cell growth and proliferation by FoxOs. Bull. Cancer 93, E36–E38 (2006).

    PubMed  Google Scholar 

  20. Okkenhaug, K., Ali, K. & Vanhaesebroeck, B. Antigen receptor signalling: a distinctive role for the p110delta isoform of PI3K. Trends Immunol. 28, 80–87 (2007).

    Article  CAS  Google Scholar 

  21. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  22. Clayton, E. et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  Google Scholar 

  23. Jou, S.T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    Article  CAS  Google Scholar 

  24. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  25. Ehrhardt, A., Ehrhardt, G.R., Guo, X. & Schrader, J.W. Ras and relatives-job sharing and networking keep an old family together. Exp. Hematol. 30, 1089–1106 (2002).

    Article  CAS  Google Scholar 

  26. Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24, 4943–4954 (2004).

    Article  CAS  Google Scholar 

  27. Murphy, G.A. et al. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation. J. Biol. Chem. 277, 9966–9975 (2002).

    Article  CAS  Google Scholar 

  28. Rosario, M., Paterson, H.F. & Marshall, C.J. Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol. Cell. Biol. 21, 3750–3762 (2001).

    Article  CAS  Google Scholar 

  29. Graham, S.M. et al. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol. Cell. Biol. 14, 4108–4115 (1994).

    Article  CAS  Google Scholar 

  30. Chan, A.M., Miki, T., Meyers, K.A. & Aaronson, S.A. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 91, 7558–7562 (1994).

    Article  CAS  Google Scholar 

  31. Huang, Y. et al. A novel insertional mutation in the TC21 gene activates its transforming activity in a human leiomyosarcoma cell line. Oncogene 11, 1255–1260 (1995).

    CAS  PubMed  Google Scholar 

  32. Clark, G.J., Kinch, M.S., Gilmer, T.M., Burridge, K. & Der, C.J. Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 12, 169–176 (1996).

    CAS  PubMed  Google Scholar 

  33. Arora, S., Matta, A., Shukla, N.K., Deo, S.V. & Ralhan, R. Identification of differentially expressed genes in oral squamous cell carcinoma. Mol. Carcinog. 42, 97–108 (2005).

    Article  CAS  Google Scholar 

  34. Sharma, R., Sud, N., Chattopadhyay, T.K. & Ralhan, R. TC21/R-Ras2 upregulation in esophageal tumorigenesis: potential diagnostic implications. Oncology 69, 10–18 (2005).

    Article  CAS  Google Scholar 

  35. Kim, R. et al. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–2062 (2003).

    Article  CAS  Google Scholar 

  36. Aronheim, A. Membrane recruitment systems for analysis of protein-protein interactions. Methods Mol. Biol. 177, 319–328 (2001).

    CAS  PubMed  Google Scholar 

  37. Graham, S.M. et al. TC21 causes transformation by Raf-independent signaling pathways. Mol. Cell. Biol. 16, 6132–6140 (1996).

    Article  CAS  Google Scholar 

  38. Lopez-Barahona, M., Bustelo, X.R. & Barbacid, M. The TC21 oncoprotein interacts with the Ral guanosine nucleotide dissociation factor. Oncogene 12, 463–470 (1996).

    CAS  PubMed  Google Scholar 

  39. Ashwell, J.D., Cunningham, R.E., Noguchi, P.D. & Hernandez, D. Cell growth cycle block of T cell hybridomas upon activation with antigen. J. Exp. Med. 165, 173–194 (1987).

    Article  CAS  Google Scholar 

  40. Cemerski, S. & Shaw, A. Immune synapses in T-cell activation. Curr. Opin. Immunol. 18, 298–304 (2006).

    Article  CAS  Google Scholar 

  41. Dustin, M.L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article  CAS  Google Scholar 

  42. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  43. Pillai, S., Cariappa, A. & Moran, S.T. Marginal zone B cells. Annu. Rev. Immunol. 23, 161–196 (2005).

    Article  CAS  Google Scholar 

  44. Klein, U. & Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nat. Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  Google Scholar 

  45. Rosario, M., Paterson, H.F. & Marshall, C.J. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 18, 1270–1279 (1999).

    Article  CAS  Google Scholar 

  46. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  47. Movilla, N., Crespo, P. & Bustelo, X.R. Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene 18, 5860–5869 (1999).

    Article  CAS  Google Scholar 

  48. Jarrett, R.F. Viruses and lymphoma/leukaemia. J. Pathol. 208, 176–186 (2006).

    Article  CAS  Google Scholar 

  49. Merchant, M., Caldwell, R.G. & Longnecker, R. The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol. 74, 9115–9124 (2000).

    Article  CAS  Google Scholar 

  50. Caldwell, R.G., Wilson, J.B., Anderson, S.J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    Article  CAS  Google Scholar 

  51. Grande, S.M., Ross, S.R. & Monroe, J.G. Viral immunoreceptor-associated tyrosine-based activation motifs: potential players in oncogenesis. Future Oncol. 2, 301–310 (2006).

    Article  CAS  Google Scholar 

  52. Peter, M.E., Wileman, T. & Terhorst, C. Covalent binding of guanine nucleotides to the CD3-gamma chain of the T cell receptor/CD3 complex. Eur. J. Immunol. 23, 461–466 (1993).

    Article  CAS  Google Scholar 

  53. Surh, C.D. & Sprent, J. Regulation of mature T cell homeostasis. Semin. Immunol. 17, 183–191 (2005).

    Article  CAS  Google Scholar 

  54. Delgado, P. & Alarcon, B. An orderly inactivation of intracellular retention signals controls surface expression of the T cell antigen receptor. J. Exp. Med. 201, 555–566 (2005).

    Article  CAS  Google Scholar 

  55. Gil, D., Schamel, W.W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  Google Scholar 

  56. Cubelos, B. et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb. Cortex 18, 1758–1770 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Mañes (Centro Nacional de Biotecnología) for the (Akt) plecstrin homology domain–DsRed construct; D. Cantrell (University of Dundee) for the GST–Raf1 Ras-binding domain construct; C. Dawson (University of Birmingham) for the hemagglutinin-tagged LMP2A construct; M. Reth (University of Freiburg) for the J5778 mouse myeloma cell line and its derivatives; J. Bluestone (University of California at San Francisco) for anti-CD3; M. Rodríguez Marcos and M. Sefton for critical reading of the manuscript; and J. José Lazcano, I. Arellano and M.J. Acuña for technical assistance. Supported by the Comisión Interministerial de Ciencia y Tecnología (SAF2006-01391), Comunidad de Madrid (SAL-0159/2006), Redes Temáticas de Investigación Cooperativa en Salud (RD06/0020/1002), the Junta de Ampliación de Estudios-doc 2008 program (B.C.) and Fundación Ramón Areces (to the Centro de Biología Molecular Severo Ochoa).

Author information

Authors and Affiliations

Authors

Contributions

P.D., B.C., E.C., N.M.-M., A.C. and C.B. did the experiments; B.A. designed and supervised the research; X.R.B. contributed new reagents and/or analytical tools; P.D., C.B., I.M. and B.A. analyzed the data; and P.D., X.R.B. and B.A. prepared the manuscript.

Corresponding author

Correspondence to Balbino Alarcón.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–2 (PDF 883 kb)

Supplementary Movie 1

TC21 cotranslocates with the TCR to the immune synapse with a time-course identical to that of CD3ζ. (AVI 37502 kb)

Supplementary Movie 2

TC21 marks the position of PI3K activity at the immune synapse. (AVI 11913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, P., Cubelos, B., Calleja, E. et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 10, 880–888 (2009). https://doi.org/10.1038/ni.1749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing