Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lymphocyte signaling: beyond knockouts

Abstract

The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Although this gene 'knockout' approach is often informative, in many cases, the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to 'knock in' subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully based on structural and biophysical data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of signaling proteins discussed in the text.

Similar content being viewed by others

References

  1. Kadlecek, T.A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  PubMed  Google Scholar 

  2. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Clements, J.L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kuhn, R. & Torres, R.M. Cre/loxP recombination system and gene targeting. Methods Mol. Biol. 180, 175–204 (2002).

    CAS  PubMed  Google Scholar 

  7. Sugihara, K. et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427–3433 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Dumont, C. et al. Rac GTPases play critical roles in early T cell development. Blood published online, doi:10.1182/blood-2008-09-181180 (16 December 2008).

  10. Jo, D. et al. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat. Biotechnol. 19, 929–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zha, Y., Shah, R., Locke, F., Wong, A. & Gajewski, T.F. Use of Cre-adenovirus and CAR transgenic mice for efficient deletion of genes in post-thymic T cells. J. Immunol. Methods 331, 94–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tybulewicz, V.L.J. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol. 17, 267–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tybulewicz, V.L.J., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ1 with phosphorylated LAT tyrosine residues. J. Biol. Chem. 275, 23355–23361 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Nunez-Cruz, S. et al. LAT regulates γδ T cell homeostasis and differentiation. Nat. Immunol. 4, 999–1008 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sommers, C.L. et al. Knock-in mutation of the distal four tyrosines of linker for activation of T cells blocks murine T cell development. J. Exp. Med. 194, 135–142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sommers, C.L. et al. Mutation of the phospholipase C-γ1-binding site of LAT affects both positive and negative thymocyte selection. J. Exp. Med. 201, 1125–1134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jordan, M.S. et al. Complementation in trans of altered thymocyte development in mice expressing mutant forms of the adaptor molecule SLP76. Immunity 28, 359–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Myung, P.S. et al. Differential requirement for SLP-76 domains in T cell development and function. Immunity 15, 1011–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Wiest, D.L. et al. A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development. Immunity 6, 663–671 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Siggs, O.M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L.C. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. 30, 194–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lu-Kuo, J.M., Fruman, D.A., Joyal, D.M., Cantley, L.C. & Katz, H.R. Impaired kit- but not FcɛRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85alpha gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  32. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Patrucco, E. et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Thien, C.B. & Langdon, W.Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Thien, C.B. et al. Loss of c-Cbl RING finger function results in high-intensity TCR signaling and thymic deletion. EMBO J. 24, 3807–3819 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thien, C.B. et al. A mouse with a loss-of-function mutation in the c-Cbl TKB domain shows perturbed thymocyte signaling without enhancing the activity of the ZAP-70 tyrosine kinase. J. Exp. Med. 197, 503–513 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Ley and E. Schweighoffer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L J Tybulewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saveliev, A., Tybulewicz, V. Lymphocyte signaling: beyond knockouts. Nat Immunol 10, 361–364 (2009). https://doi.org/10.1038/ni.1709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing