Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments

Abstract

In much of the global ocean, iron is a limiting nutrient for marine productivity. The formation of pyrite has been considered the most important sink of reactive iron in modern, organic-rich sediments. However, clay mineral transformations can also lead to long-term sequestration of iron during late diagenesis and in hydrothermal settings. Here we present evidence for substantial iron sequestration during the early diagenetic formation of ferruginous clay minerals, also called green-clay authigenesis, in the deep-sea environment of the Ivory Coast–Ghana Marginal Ridge. Using high-resolution electron microscopic methods and sequential sediment extraction techniques, we demonstrate that iron uptake by green-clay authigenesis can amount to 76 ± 127 μmol Fe cm−2 kyr−1, which is on average six times higher than that of pyrite in suboxic subsurface sediments 5 m below the sea floor or shallower. Even at depths of 15 m below the sea floor or greater, rates of iron burial by green clay and pyrite are almost equal at 80 μmol Fe cm−2 kyr−1. We conclude that green-clay formation significantly reduces the pore water inventory of dissolved iron in modern and ancient pelagic sediments, which challenges the long-standing conceptual view that clay mineral diagenesis is of little importance in current biogeochemical models of the marine iron cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance and evolution of Fe-bearing, authigenic green-clay minerals in the Ivory Coast deep-sea sediments (ODP Site 959).
Figure 2: Reaction mechanism and iron uptake during green-clay authigenesis.
Figure 3: Composition, distribution and spatial evolution of solid phase iron at ODP Site 959.
Figure 4: Schematic model illustrating the marine, sedimentary iron cycle at ODP Site 959.

Similar content being viewed by others

References

  1. Martin, J. H. Glacial–interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  2. Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  Google Scholar 

  3. Coale, K. H. et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  Google Scholar 

  4. Blain, S. et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446, 1070–1075 (2007).

    Article  Google Scholar 

  5. Taylor, K. G. & Konhauser, K. O. Iron in earth surface systems: A major player in chemical and biological processes. Elements 7, 83–88 (2011).

    Article  Google Scholar 

  6. Posth, N. R., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).

    Article  Google Scholar 

  7. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci. 3, 486–490 (2010).

    Article  Google Scholar 

  8. Taylor, K. G. & Macquaker, J. H. S. Iron minerals in marine sediments record chemical environments. Elements 7, 113–118 (2011).

    Article  Google Scholar 

  9. Raiswell, R. & Canfield, D. E. The Iron Biogeochemical Cycle Past and Present (Geochem. Perspec., 2012).

    Book  Google Scholar 

  10. Köhler, I., Konhauser, K. O., Papineau, D., Bekker, A. & Kappler, A. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Commun. 4, 1741 (2013).

    Article  Google Scholar 

  11. Berner, R. A. Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am. J. Sci. 267, 19–42 (1969).

    Article  Google Scholar 

  12. Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).

    Article  Google Scholar 

  13. Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    Article  Google Scholar 

  14. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  15. Elrod, V. A., Berelson, W. M., Coale, K. H. & Johnson, K. S. The flux of iron from continental shelf sediments: A missing source for global budgets. Geophys. Res. Lett. 31, L12307 (2004).

    Article  Google Scholar 

  16. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  Google Scholar 

  17. Raiswell, R. et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim. Cosmochim. Acta 70, 2765–2780 (2006).

    Article  Google Scholar 

  18. Cassar, N. et al. The southern ocean biological response to aeolian iron deposition. Science 317, 1067–1070 (2007).

    Article  Google Scholar 

  19. Homoky, W. B., John, S. G., Conway, T. & Mills, R. A. Distinct iron isotopic signatures and supply from marine sediment dissolution. Nature Commun. 4, 2143 (2013).

    Article  Google Scholar 

  20. Johnson, K. S. et al. Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response. Glob. Biogeochem. Cycles 17, 1063 (2003).

    Article  Google Scholar 

  21. Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nature Geosci. 3, 675–682 (2010).

    Article  Google Scholar 

  22. Cumming, V. M., Poulton, S. W., Rooney, A. D. & Selby, D. Anoxia in the terrestrial environment during the late Mesoproterozoic. Geology 41, 583–586 (2013).

    Article  Google Scholar 

  23. Parekh, P., Follows, M. J. & Boyle, E. Modeling the global iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).

    Google Scholar 

  24. Canfield, E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

    Article  Google Scholar 

  25. Poulton, S. W. & Raiswell, R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem. Geol. 218, 203–221 (2005).

    Article  Google Scholar 

  26. Canfield, D. E., Thamdrup, B. & Hansen, J. W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57, 3867–3883 (1993).

    Article  Google Scholar 

  27. Severmann, S., McManus, J., Berelson, W. M. & Hammond, D. E. The continental shelf benthic iron flux and its isotope composition. Geochim. Cosmochim. Acta 74, 3984–4004 (2010).

    Article  Google Scholar 

  28. John, S. G., Mendez, J., Moffett, J. & Adkins, J. The flux of iron and iron isotopes from San Pedro Basin sediments. Geochim. Cosmochim. Acta 93, 14–29 (2012).

    Article  Google Scholar 

  29. Homoky, W. B. et al. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochim. Cosmochim. Acta 75, 5032–5048 (2011).

    Article  Google Scholar 

  30. Dale, A. W. et al. A revised global estimate of dissolved iron fluxes from marine sediments. Glob. Biogeochem. Cycles 29, GB005017 (2015).

    Article  Google Scholar 

  31. Raiswell, R. Iceberg-hosted nanoparticulate Fe in the Southern Ocean: Mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep Sea Res. I 58, 1364–1375 (2011).

    Article  Google Scholar 

  32. Passier, H. F., Middelburg, J. J., de Lange, G. J. & Böttcher, M. E. Pyrite contents, microstructures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 25, 519–522 (1997).

    Article  Google Scholar 

  33. Chester, R. Marine Geochemistry (Blackwell Science, 2000).

    Google Scholar 

  34. Baldermann, A., Warr, L. N., Grathoff, G. H. & Dietzel, M. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast—Ghana Marginal Ridge. Clay. Clay Miner. 61, 258–276 (2013).

    Article  Google Scholar 

  35. Charpentier, D., Buatier, M., Jacquot, E., Gaudin, A. & Wheat, C. G. Conditions and mechanism for the formation of iron-rich montmorillonite in deep sea sediments (Costa Rica margin): Coupling high-resolution mineralogical characterization and geochemical modeling. Geochim. Cosmochim. Acta 75, 1397–1410 (2011).

    Article  Google Scholar 

  36. Mascle, J. et al. 9. Principal results. Proc. ODP Init. Rep. 159, 297–314 (1996).

    Google Scholar 

  37. Giresse, P., Gadel, F., Serve, L. & Barusseau, J. P. Indicators of climate and sediment-source variations at site 959: Implications for the reconstructions of paleoenvironments in the Gulf of Guinea through Pleistocene times. Proc. ODP Sci. Res. 159, 585–603 (1998).

    Google Scholar 

  38. Wagner, T. Pliocene–Pleistocene deposition of carbonate and organic carbon at Site 959: Paleoenvironmental implications for the eastern equatorial Atlantic of the Ivory Coast/Ghana. Proc. ODP Sci. Res. 159, 557–574 (1998).

    Google Scholar 

  39. Johnson, K. S., Coale, K. H., Elrod, V. A. & Tindale, N. W. Iron photochemistry in seawater from the equatorial Pacific. Mar. Chem. 46, 319–334 (1994).

    Article  Google Scholar 

  40. Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Article  Google Scholar 

  41. Logvinenko, N. V. Origin of glauconite in the recent bottom sediments of the ocean. Sediment. Geol. 31, 43–38 (1982).

    Article  Google Scholar 

  42. Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).

    Article  Google Scholar 

  43. Odin, G. S. Green Marine Clays (Elsevier, 1988).

    Google Scholar 

  44. Giresse, P., Wiewióra, A. & Grabska, D. Glauconitization processes in the northwestern Mediterranean (Gulf of Lions). Clay Miner. 39, 57–73 (2004).

    Article  Google Scholar 

  45. Wigley, R. A. & Compton, J. S. Oligocene to Holocene glauconite phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa. Deep Sea Res. II 54, 1375–1395 (2007).

    Article  Google Scholar 

  46. Thompson, G., Mottl, M. J. & Rone, P. A. Morphology, mineralogy and chemistry of hydrothermal deposits from the Tag Area, 26° N Mid-Atlantic Ridge. Chem. Geol. 49, 243–257 (1985).

    Article  Google Scholar 

  47. Buatier, M., Honnorez, J. & Ehret, G. Fe-smectite–glauconite transition in hydrothermal clays from the Galapagos Spreading Center. Clay. Clay Miner. 37, 532–541 (1989).

    Article  Google Scholar 

  48. Cuadros, J., Dekov, V. M., Arroyo, X. & Nieto, F. Smectite formation in submarine hydrothermal sediments: Samples from the HMS Challenger Expedition (1872–1776). Clay. Clay Miner. 59, 147–164 (2011).

    Article  Google Scholar 

  49. Raiswell, R. et al. Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochim. Cosmochim. Acta 75, 1072–1087 (2011).

    Article  Google Scholar 

  50. Van Aken, P. A., Liebscher, B. & Styrsa, V. J. Quantitative determination of iron oxidative states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998).

    Article  Google Scholar 

  51. Baldermann, A. et al. The Fe–Mg-saponite solid solution series—A hydrothermal synthesis study. Clay Miner. 49, 391–415 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge A. Wuelbers from the MARUM Bremen, who assisted us with the sampling. M. E. Böttcher from the Baltic Sea Research Institute (IOW, Warnemünde) is greatly acknowledged for his support with the solid phase iron speciation calculations and he provided the bulk sediment sulphur data. Funding by the NAWI Graz is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and L.N.W. wrote the manuscript. A.B. provided the solid phase iron speciation data and A.B. and V.M. calculated the iron sequestration rates. I.L.-P. provided the TEM data. V.M. and I.L.-P. contributed to the preparation of the manuscript.

Corresponding author

Correspondence to A. Baldermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldermann, A., Warr, L., Letofsky-Papst, I. et al. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nature Geosci 8, 885–889 (2015). https://doi.org/10.1038/ngeo2542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing