Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silica burial enhanced by iron limitation in oceanic upwelling margins

Abstract

In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of biogenic silica fluxes and molar biogenic silica (Si) to organic carbon (Si/Corg) ratios shows the variability in Si/Corg ratio among a wide range of oceanic provinces.
Figure 2: Biogenic fluxes, Si/Corg ratio and diatom-bound Fe in the Gulf of California sediment trap.
Figure 3: Multiproxy reconstruction of silica cycling and iron biological availability in the Gulf of California over the last climatic cycle in core MD 02-2515 (27° 53’ N, 111° 40’ W) illustrates the long-term impact of Fe limitation on Si burial.

Similar content being viewed by others

References

  1. Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).

    Article  Google Scholar 

  2. Ragueneau, O. et al. A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26, 317–365 (2000).

    Article  Google Scholar 

  3. Archer, D. & Maier-reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).

    Article  Google Scholar 

  4. Brzezinski, M. A. The Si–C–N ratio of marine diatoms-interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    Article  Google Scholar 

  5. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Article  Google Scholar 

  6. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, GB4028 (2004).

    Article  Google Scholar 

  7. Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep-Sea Res. I 42, 697–719 (1995).

    Article  Google Scholar 

  8. Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    Article  Google Scholar 

  9. Tréguer, P. et al. The silica balance in the world ocean: A reestimate. Science 268, 375–379 (1995).

    Article  Google Scholar 

  10. Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1984).

    Google Scholar 

  11. Tréguer, P. & De La Rocha, C. The world ocean silica cycle. Ann. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  12. Sirocko, F. Deep-sea sediments of the arabian sea—a paleoclimatic record of the southwest-asian summer monsoon. Geol. Rundsch. 80, 557–566 (1991).

    Article  Google Scholar 

  13. Demaster, D. J. The supply and accumulation of silica in the marine-environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

    Article  Google Scholar 

  14. Thunell, R. C. Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep-Sea Res. I 45, 2059–2083 (1998).

    Article  Google Scholar 

  15. Honjo, S., Steven, J. M., Richard, A. K. & Roger, F. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  16. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  Google Scholar 

  17. Brand, L. E. Minimum iron requirements of marine-phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36, 1756–1771 (1991).

    Article  Google Scholar 

  18. Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  Google Scholar 

  19. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  20. Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

    Article  Google Scholar 

  21. Brzezinski, M. A. et al. A switch from Si(OH)(4) to NO3-depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).

    Article  Google Scholar 

  22. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  Google Scholar 

  23. Firme, G. F., Rue, E. L., Weeks, D. A., Bruland, K. W. & Hutchins, D. A. Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry. Glob. Biogeochem. Cycles 17, 1016 (2003).

    Article  Google Scholar 

  24. Fitzwater, S. E. et al. Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system. Cont. Shelf Res. 23, 1523–1544 (2003).

    Article  Google Scholar 

  25. Chase, Z. et al. Manganese and iron distributions off central California influenced by upwelling and shelf width. Mar. Chem. 95, 235–254 (2005).

    Article  Google Scholar 

  26. Calvert, S. E. Accumulation of diatomaceous silica in the sediments of Gulf of California. Geol. Soc. Am. Bull. 77, 569–596 (1966).

    Article  Google Scholar 

  27. Pichevin, L. et al. Silicic acid biogeochemistry in the Gulf of California: Insights from sedimentary Si isotopes. Paleoceanography 27, PA2201 (2012).

    Article  Google Scholar 

  28. Segovia-Zavala, J. A., Lares, M. L., Delgadillo-Hinojosa, F., Tovar-Sanchez, A. & Sanudo-Wilhelmy, S. A. Dissolved iron distributions in the central region of the Gulf of California, Mexico. Deep-Sea Res. I 57, 53–64 (2010).

    Article  Google Scholar 

  29. Twining, B. S. et al. Metal quotas of plankton in the equatorial Pacific Ocean. Deep-Sea Res. II 58, 325–341 (2011).

    Article  Google Scholar 

  30. Arellano-Torres, E., Pichevin, L. E. & Ganeshram, R. S. High-resolution opal records from the eastern tropical Pacific provide evidence for silicic acid leakage from HNLC regions during glacial periods. Quat. Sci. Rev. 30, 1112–1121 (2011).

    Article  Google Scholar 

  31. De la Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64, 2467–2477 (2000).

    Article  Google Scholar 

  32. Reynolds, B. C., Frank, M. & Halliday, A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet. Sci. Lett. 244, 431–443 (2006).

    Article  Google Scholar 

  33. Franck, V. M., Brzezinski, M. A., Coale, K. H. & Nelson, D. M. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res. II 47, 3315–3338 (2000).

    Article  Google Scholar 

  34. Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).

    Article  Google Scholar 

  35. Reynolds, B. C., Georg, R. B., Oberli, F., Wiechert, U. H. & Halliday, A. N. Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J. Anal. At. Spectrom. 21, 266–269 (2006).

    Article  Google Scholar 

  36. Morley, D. W. et al. Cleaning of lake sediment samples for diatom oxygen isotope analysis. J. Paleolimnol. 31, 391–401 (2004).

    Article  Google Scholar 

  37. Ellwood, M. J. & Hunter, K. A. Determination of the Zn/Si ratio in diatom opal: A method for the separation, cleaning and dissolution of diatoms. Mar. Chem. 66, 149–160 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Calvert, K. Darling and B. Reynolds for discussions. Financial support for this project was provided by the Scottish Alliance for Geoscience Environment Society (SAGES), and the Natural Environment Research Council (NERC) through a Standard NERC grant to R.S.G. and L.E.P. Sediment Core MD 02-2515 was retrieved during the MONA (Marges Ouest Nord Américaines) cruise of the RV Marion Dufresne (International Marine Global Changes-IMAGES VIII) in June 2002.

Author information

Authors and Affiliations

Authors

Contributions

L.E.P. and R.S.G. initiated the project. L.E.P. and R.H. measured diatom-bound trace metals, L.E.P. measured elemental composition and silicon isotopes, W.G. and R.T. provided samples for diatom-bound trace metal measurements, and L.E.P. and R.S.G. wrote the paper with the participation of W.G. All authors were involved in the discussions of the results and commented on the manuscript.

Corresponding author

Correspondence to L. E. Pichevin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichevin, L., Ganeshram, R., Geibert, W. et al. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nature Geosci 7, 541–546 (2014). https://doi.org/10.1038/ngeo2181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2181

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology