Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global rates of water-column denitrification derived from nitrogen gas measurements

Abstract

Biologically available nitrogen (N) limits phytoplankton growth over much of the ocean. The rate at which N is removed from the contemporary ocean by denitrifying bacteria is highly uncertain1,2,3. Some studies suggest that N losses exceed inputs2,4,5,6; others argue for a balanced budget3,7,8. Here, we use a global ocean circulation model to simulate the distribution of N2 gas produced by denitrifying bacteria in the three main suboxic zones in the open ocean. By fitting the model to measured N2 gas concentrations, we infer a globally integrated rate of water-column denitrification of 66±6 Tg N yr−1. Taking into account isotopic constraints on the fraction of denitrification occurring in the water column versus marine sediments, we estimate that the global rate of N loss from marine sediments and the oceanic water column combined amounts to around 230±60 Tg N yr−1. Given present estimates of N input rates, our findings imply a net loss of around 20 ± 70 Tg of N from the global ocean each year, indistinguishable from a balanced budget. A balanced N budget, in turn, implies that the marine N cycle is governed by strong regulatory feedbacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suboxic zones and data locations.
Figure 2: Modelled Nxs and total N loss.
Figure 3: Marine N budget.

Similar content being viewed by others

References

  1. Codispoti, L. A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene. Scientia Marina 65, 85–105 (2001).

    Article  Google Scholar 

  2. Codispoti, L. An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs. the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4, 233–253 (2007).

    Article  Google Scholar 

  3. Gruber, N. in Nitrogen in the Marine Environment (eds Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J.) 1–50 (Elsevier, 2008).

    Book  Google Scholar 

  4. Codispoti, L. Is the ocean losing nitrate? Nature 376, 724 (2002).

    Article  Google Scholar 

  5. Middelburg, J., Soetart, K., Herman, P. M. J. & Heip, C. H. R. Denitrification in marine sediments: A model study. Glob. Biogeochem. Cycles 10, 661–673 (1996).

    Article  Google Scholar 

  6. Brandes, J. A. & Devol, A. H. A global marine-fixed nitrogen isotopic budget: Implications for holocene nitrogen cycling. Glob. Biogeochem. Cycles 16, 1120 (2002).

    Article  Google Scholar 

  7. Gruber, N. & Sarmiento, J. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  Google Scholar 

  8. Gruber, N. in The Ocean Carbon Cycle and Climate (eds Follows, M. & Oguz, T.) 97–148 (Kluwer Academic, 2004).

    Book  Google Scholar 

  9. Codispoti, L. A. & Richards, F. A. An analysis of the horizontal regime of denitrification in the eastern tropical North Pacific. Limnol. Oceanogr. 21, 379–388 (1976).

    Article  Google Scholar 

  10. Naqvi, S. W. A. Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea. J. Mar. Res. 45, 1049–1072 (1987).

    Article  Google Scholar 

  11. Fauzi, R. et al. Nitrogen biogeochemical cycling in the northwestern indian ocean. Deep Sea Res. 40, 651–671 (1993).

    Article  Google Scholar 

  12. Howell, E. A., Doney, S. C., Fine, R. A. & Olson, D. B. Geochemical estimates of denitrification in the Arabian Sea and Bay of Bengal during WOCE. Geophys. Res. Lett. 24, 2549–2552 (1997).

    Article  Google Scholar 

  13. Bange, H. W. et al. A revised nitrogen budget for the Arabian Sea. Glob. Biogeochem. Cycles 14, 1283–1297 (2000).

    Article  Google Scholar 

  14. Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L. & Ganachaud, A. Denitrification and N2 fixation in the Pacific Ocean. Glob. Biogeochem. Cycles 15, 483–506 (2001).

    Article  Google Scholar 

  15. Galloway, J. N. et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Article  Google Scholar 

  16. Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial–interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18, GB4012 (2004).

    Article  Google Scholar 

  17. Altabet, M. A. Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences 4, 75–86 (2007).

    Article  Google Scholar 

  18. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the global ocean. Nature 445, 163–167 (2007).

    Article  Google Scholar 

  19. DeVries, T. & Primeau, F. Dynamically- and observationally-constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Ocean. 41, 2381–2401 (2011).

    Article  Google Scholar 

  20. Devol, A. H. et al. Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep Sea Res. I 53, 1533–1547 (2006).

    Article  Google Scholar 

  21. Chang, B. X., Devol, A. H. & Emerson, S. R. Denitrification and the nitrogen gas excess in the eastern tropical South Pacific oxygen deficient zone. Deep Sea Res. I 57, 1092–1101 (2010).

    Article  Google Scholar 

  22. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  Google Scholar 

  23. Key, R. M. et al. A global ocean carbon climatology: Results from GLODAP. Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Article  Google Scholar 

  24. Najjar, R. & Orr, J. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. http://www.ipsl/jusiieu.fr/OCMIP/phase2/#simulations (1998).

  25. Garcia, H. E. et al. in World Ocean Atlas 2009 (ed. Levitus, S.) (US Government Printing Office, 2010).

    Google Scholar 

  26. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limn. Ocean. 42, 1–20 (1997).

    Article  Google Scholar 

  27. Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary production modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22, GB2024 (2008).

    Article  Google Scholar 

  28. Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Glob. Biogeochem. Cycles 19, GB4026 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NSF grants OCE-1131548 and OCE-1131768 and by the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.D. and T.D. designed the study. T.D. carried out the simulations. T.D. and C.D. wrote the paper, with input from B.C., A.D. and F.P. T.D. and F.P. designed the ocean circulation model. B.C. and A.D. provided the Nxs data.

Corresponding author

Correspondence to Tim DeVries.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVries, T., Deutsch, C., Primeau, F. et al. Global rates of water-column denitrification derived from nitrogen gas measurements. Nature Geosci 5, 547–550 (2012). https://doi.org/10.1038/ngeo1515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1515

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology